ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov1g Unicode version

Theorem csbov1g 5928
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov1g  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F C ) )
Distinct variable groups:    x, C    x, F
Allowed substitution hints:    A( x)    B( x)    V( x)

Proof of Theorem csbov1g
StepHypRef Expression
1 csbov12g 5927 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C
) )
2 csbconstg 3083 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ C  =  C )
32oveq2d 5904 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C )  =  ( [_ A  /  x ]_ B F C ) )
41, 3eqtrd 2220 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   [_csb 3069  (class class class)co 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891
This theorem is referenced by:  modfsummodlemstep  11478  fprodmodd  11662
  Copyright terms: Public domain W3C validator