| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbov1g | GIF version | ||
| Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbov1g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov12g 6034 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3138 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 3 | 2 | oveq2d 6010 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹𝐶)) |
| 4 | 1, 3 | eqtrd 2262 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ⦋csb 3124 (class class class)co 5994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5274 df-fv 5322 df-ov 5997 |
| This theorem is referenced by: modfsummodlemstep 11954 fprodmodd 12138 |
| Copyright terms: Public domain | W3C validator |