ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov1g GIF version

Theorem csbov1g 5893
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov1g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbov1g
StepHypRef Expression
1 csbov12g 5892 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
2 csbconstg 3063 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32oveq2d 5869 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
41, 3eqtrd 2203 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  csb 3049  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  modfsummodlemstep  11420  fprodmodd  11604
  Copyright terms: Public domain W3C validator