ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov12g Unicode version

Theorem csbov12g 5934
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov12g  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C
) )
Distinct variable group:    x, F
Allowed substitution hints:    A( x)    B( x)    C( x)    V( x)

Proof of Theorem csbov12g
StepHypRef Expression
1 csbov123g 5933 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
) )
2 csbconstg 3086 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ F  =  F )
32oveqd 5912 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C )  =  ( [_ A  /  x ]_ B F
[_ A  /  x ]_ C ) )
41, 3eqtrd 2222 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   [_csb 3072  (class class class)co 5895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5898
This theorem is referenced by:  csbov1g  5935  csbov2g  5936  fprodmul  11630  mulcncflem  14542
  Copyright terms: Public domain W3C validator