ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsummulc2 Unicode version

Theorem fsummulc2 11959
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1  |-  ( ph  ->  A  e.  Fin )
fsummulc2.2  |-  ( ph  ->  C  e.  CC )
fsummulc2.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsummulc2  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Distinct variable groups:    A, k    C, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsummulc2
Dummy variables  f  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4  |-  ( ph  ->  C  e.  CC )
21mul01d 8539 . . 3  |-  ( ph  ->  ( C  x.  0 )  =  0 )
3 sumeq1 11866 . . . . . 6  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
4 sum0 11899 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
53, 4eqtrdi 2278 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
65oveq2d 6017 . . . 4  |-  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B )  =  ( C  x.  0 ) )
7 sumeq1 11866 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  sum_ k  e.  (/)  ( C  x.  B ) )
8 sum0 11899 . . . . 5  |-  sum_ k  e.  (/)  ( C  x.  B )  =  0
97, 8eqtrdi 2278 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  0 )
106, 9eqeq12d 2244 . . 3  |-  ( A  =  (/)  ->  ( ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B
)  <->  ( C  x.  0 )  =  0 ) )
112, 10syl5ibrcom 157 . 2  |-  ( ph  ->  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
12 addcl 8124 . . . . . . . . 9  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
1312adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
141ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
15 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
16 simprr 531 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
v  e.  CC )
1714, 15, 16adddid 8171 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( C  x.  (
u  +  v ) )  =  ( ( C  x.  u )  +  ( C  x.  v ) ) )
18 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  NN )
19 nnuz 9758 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
2018, 19eleqtrdi 2322 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  ( ZZ>= `  1 )
)
21 elnnuz 9759 . . . . . . . . . . . 12  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
2221biimpri 133 . . . . . . . . . . 11  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
2322adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  u  e.  NN )
24 f1of 5572 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  f : ( 1 ... ( `  A
) ) --> A )
2524ad2antll 491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
2625ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
27 1zzd 9473 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
1  e.  ZZ )
2818ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( `  A )  e.  NN )
2928nnzd 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( `  A )  e.  ZZ )
30 eluzelz 9731 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  ZZ )
3130ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  u  e.  ZZ )
3227, 29, 313jca 1201 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  u  e.  ZZ ) )
33 eluzle 9734 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( ZZ>= `  1
)  ->  1  <_  u )
3433ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
1  <_  u )
35 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  u  <_  ( `  A )
)
3634, 35jca 306 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( 1  <_  u  /\  u  <_  ( `  A
) ) )
37 elfz2 10211 . . . . . . . . . . . . . 14  |-  ( u  e.  ( 1 ... ( `  A )
)  <->  ( ( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  u  e.  ZZ )  /\  ( 1  <_  u  /\  u  <_  ( `  A ) ) ) )
3832, 36, 37sylanbrc 417 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  u  e.  ( 1 ... ( `  A
) ) )
39 fvco3 5705 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  u  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  u )  =  ( ( k  e.  A  |->  B ) `  (
f `  u )
) )
4026, 38, 39syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  u )  =  ( ( k  e.  A  |->  B ) `  (
f `  u )
) )
4126, 38ffvelcdmd 5771 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( f `  u
)  e.  A )
42 fsummulc2.3 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
4342ralrimiva 2603 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
4443ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  A. k  e.  A  B  e.  CC )
45 nfcsb1v 3157 . . . . . . . . . . . . . . . . 17  |-  F/_ k [_ ( f `  u
)  /  k ]_ B
4645nfel1 2383 . . . . . . . . . . . . . . . 16  |-  F/ k
[_ ( f `  u )  /  k ]_ B  e.  CC
47 csbeq1a 3133 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  u )  ->  B  =  [_ ( f `  u )  /  k ]_ B )
4847eleq1d 2298 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  u )  ->  ( B  e.  CC  <->  [_ ( f `
 u )  / 
k ]_ B  e.  CC ) )
4946, 48rspc 2901 . . . . . . . . . . . . . . 15  |-  ( ( f `  u )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  u
)  /  k ]_ B  e.  CC )
)
5041, 44, 49sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  [_ ( f `  u
)  /  k ]_ B  e.  CC )
51 eqid 2229 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
5251fvmpts 5712 . . . . . . . . . . . . . 14  |-  ( ( ( f `  u
)  e.  A  /\  [_ ( f `  u
)  /  k ]_ B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  ( f `  u
) )  =  [_ ( f `  u
)  /  k ]_ B )
5341, 50, 52syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  B ) `  ( f `  u
) )  =  [_ ( f `  u
)  /  k ]_ B )
5453, 50eqeltrd 2306 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  B ) `  ( f `  u
) )  e.  CC )
5540, 54eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  u )  e.  CC )
56 0cnd 8139 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  0  e.  CC )
5723nnzd 9568 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  u  e.  ZZ )
5818adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  NN )
5958nnzd 9568 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
60 zdcle 9523 . . . . . . . . . . . 12  |-  ( ( u  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  u  <_  ( `  A
) )
6157, 59, 60syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  -> DECID  u  <_  ( `  A
) )
6255, 56, 61ifcldadc 3632 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  if (
u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  u ) ,  0 )  e.  CC )
63 breq1 4086 . . . . . . . . . . . 12  |-  ( n  =  u  ->  (
n  <_  ( `  A
)  <->  u  <_  ( `  A
) ) )
64 fveq2 5627 . . . . . . . . . . . 12  |-  ( n  =  u  ->  (
( ( k  e.  A  |->  B )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  B )  o.  f
) `  u )
)
6563, 64ifbieq1d 3625 . . . . . . . . . . 11  |-  ( n  =  u  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  =  if ( u  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u ) ,  0 ) )
66 eqid 2229 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) )
6765, 66fvmptg 5710 . . . . . . . . . 10  |-  ( ( u  e.  NN  /\  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u
) ,  0 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) ) `  u )  =  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u
) ,  0 ) )
6823, 62, 67syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) `  u )  =  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 u ) ,  0 ) )
6968, 62eqeltrd 2306 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) `  u )  e.  CC )
70 csbov2g 6043 . . . . . . . . . . . 12  |-  ( ( f `  u )  e.  A  ->  [_ (
f `  u )  /  k ]_ ( C  x.  B )  =  ( C  x.  [_ ( f `  u
)  /  k ]_ B ) )
7141, 70syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  [_ ( f `  u
)  /  k ]_ ( C  x.  B
)  =  ( C  x.  [_ ( f `
 u )  / 
k ]_ B ) )
7235iftrued 3609 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u
) ,  0 )  =  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `
 u ) )
73 fvco3 5705 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  u  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  u )
) )
7426, 38, 73syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  u )
) )
751ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  C  e.  CC )
7675, 50mulcld 8167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( C  x.  [_ ( f `  u
)  /  k ]_ B )  e.  CC )
7771, 76eqeltrd 2306 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  [_ ( f `  u
)  /  k ]_ ( C  x.  B
)  e.  CC )
78 eqid 2229 . . . . . . . . . . . . . 14  |-  ( k  e.  A  |->  ( C  x.  B ) )  =  ( k  e.  A  |->  ( C  x.  B ) )
7978fvmpts 5712 . . . . . . . . . . . . 13  |-  ( ( ( f `  u
)  e.  A  /\  [_ ( f `  u
)  /  k ]_ ( C  x.  B
)  e.  CC )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 ( f `  u ) )  = 
[_ ( f `  u )  /  k ]_ ( C  x.  B
) )
8041, 77, 79syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  u
) )  =  [_ ( f `  u
)  /  k ]_ ( C  x.  B
) )
8172, 74, 803eqtrd 2266 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u
) ,  0 )  =  [_ ( f `
 u )  / 
k ]_ ( C  x.  B ) )
8235iftrued 3609 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u
) ,  0 )  =  ( ( ( k  e.  A  |->  B )  o.  f ) `
 u ) )
8382, 40, 533eqtrd 2266 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u
) ,  0 )  =  [_ ( f `
 u )  / 
k ]_ B )
8483oveq2d 6017 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( C  x.  if ( u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  u ) ,  0 ) )  =  ( C  x.  [_ ( f `  u
)  /  k ]_ B ) )
8571, 81, 843eqtr4d 2272 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  ->  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u
) ,  0 )  =  ( C  x.  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u
) ,  0 ) ) )
861ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  C  e.  CC )
8786mul01d 8539 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  ( C  x.  0 )  =  0 )
88 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  -.  u  <_  ( `  A )
)
8988iffalsed 3612 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  if (
u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  u ) ,  0 )  =  0 )
9089oveq2d 6017 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  ( C  x.  if ( u  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  u ) ,  0 ) )  =  ( C  x.  0 ) )
9188iffalsed 3612 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  if (
u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  u ) ,  0 )  =  0 )
9287, 90, 913eqtr4rd 2273 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  ( `  A )
)  ->  if (
u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  u ) ,  0 )  =  ( C  x.  if ( u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  u ) ,  0 ) ) )
93 exmiddc 841 . . . . . . . . . . 11  |-  (DECID  u  <_ 
( `  A )  -> 
( u  <_  ( `  A )  \/  -.  u  <_  ( `  A )
) )
9461, 93syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( u  <_  ( `  A )  \/  -.  u  <_  ( `  A ) ) )
9585, 92, 94mpjaodan 803 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  if (
u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  u ) ,  0 )  =  ( C  x.  if ( u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  u ) ,  0 ) ) )
9680, 77eqeltrd 2306 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  u
) )  e.  CC )
9774, 96eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u )  e.  CC )
9897, 56, 61ifcldadc 3632 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  if (
u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  u ) ,  0 )  e.  CC )
99 fveq2 5627 . . . . . . . . . . . 12  |-  ( n  =  u  ->  (
( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  u )
)
10063, 99ifbieq1d 3625 . . . . . . . . . . 11  |-  ( n  =  u  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  n ) ,  0 )  =  if ( u  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u ) ,  0 ) )
101 eqid 2229 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) `  n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `
 n ) ,  0 ) )
102100, 101fvmptg 5710 . . . . . . . . . 10  |-  ( ( u  e.  NN  /\  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u
) ,  0 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `
 n ) ,  0 ) ) `  u )  =  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  u
) ,  0 ) )
10323, 98, 102syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n
) ,  0 ) ) `  u )  =  if ( u  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `
 u ) ,  0 ) )
10468oveq2d 6017 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( C  x.  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) ) `  u ) )  =  ( C  x.  if ( u  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  u ) ,  0 ) ) )
10595, 103, 1043eqtr4d 2272 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n
) ,  0 ) ) `  u )  =  ( C  x.  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) ) `  u ) ) )
106 mulcl 8126 . . . . . . . . 9  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
107106adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  x.  v
)  e.  CC )
1081adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  C  e.  CC )
10913, 17, 20, 69, 105, 107, 108seq3distr 10754 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `
 n ) ,  0 ) ) ) `
 ( `  A
) )  =  ( C  x.  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) ) )
110 fveq2 5627 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  m
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
111 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
1121adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
113112, 42mulcld 8167 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  B )  e.  CC )
114113fmpttd 5790 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( C  x.  B
) ) : A --> CC )
115114adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  ( C  x.  B
) ) : A --> CC )
116115ffvelcdmda 5770 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  m
)  e.  CC )
117 fvco3 5705 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
11825, 117sylan 283 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) ) )
119110, 18, 111, 116, 118fsum3 11898 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B
) ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) )
120 fveq2 5627 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
12142fmpttd 5790 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
122121adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
123122ffvelcdmda 5770 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
124 fvco3 5705 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
12525, 124sylan 283 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( f `  n
) ) )
126120, 18, 111, 123, 125fsum3 11898 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) )
127126oveq2d 6017 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( C  x.  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) ) )
128109, 119, 1273eqtr4rd 2273 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m ) )
129 sumfct 11885 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
sum_ k  e.  A  B )
13043, 129syl 14 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
)
131130oveq2d 6017 . . . . . . 7  |-  ( ph  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( C  x.  sum_ k  e.  A  B ) )
132131adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( C  x.  sum_ k  e.  A  B ) )
133113ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  ( C  x.  B
)  e.  CC )
134 sumfct 11885 . . . . . . . 8  |-  ( A. k  e.  A  ( C  x.  B )  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 m )  = 
sum_ k  e.  A  ( C  x.  B
) )
135133, 134syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m )  =  sum_ k  e.  A  ( C  x.  B )
)
136135adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B
) ) `  m
)  =  sum_ k  e.  A  ( C  x.  B ) )
137128, 132, 1363eqtr3d 2270 . . . . 5  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
138137expr 375 . . . 4  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( f : ( 1 ... ( `  A ) ) -1-1-onto-> A  -> 
( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
139138exlimdv 1865 . . 3  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
140139expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  ( C  x.  sum_ k  e.  A  B )  = 
sum_ k  e.  A  ( C  x.  B
) ) )
141 fsummulc2.1 . . 3  |-  ( ph  ->  A  e.  Fin )
142 fz1f1o 11886 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
143141, 142syl 14 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
14411, 140, 143mpjaod 723 1  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   [_csb 3124   (/)c0 3491   ifcif 3602   class class class wbr 4083    |-> cmpt 4145    o. ccom 4723   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Fincfn 6887   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    <_ cle 8182   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669  ♯chash 10997   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  fsummulc1  11960  fsumneg  11962  fsum2mul  11964  cvgratnnlemabsle  12038  mertensabs  12048  eirraplem  12288  fsumdvdsmul  15665
  Copyright terms: Public domain W3C validator