ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceov Unicode version

Theorem rspceov 5729
Description: A frequently used special case of rspc2ev 2750 for operation values. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
rspceov  |-  ( ( C  e.  A  /\  D  e.  B  /\  S  =  ( C F D ) )  ->  E. x  e.  A  E. y  e.  B  S  =  ( x F y ) )
Distinct variable groups:    x, A    x, y, B    x, C, y   
y, D    x, F, y    x, S, y
Allowed substitution hints:    A( y)    D( x)

Proof of Theorem rspceov
StepHypRef Expression
1 oveq1 5697 . . 3  |-  ( x  =  C  ->  (
x F y )  =  ( C F y ) )
21eqeq2d 2106 . 2  |-  ( x  =  C  ->  ( S  =  ( x F y )  <->  S  =  ( C F y ) ) )
3 oveq2 5698 . . 3  |-  ( y  =  D  ->  ( C F y )  =  ( C F D ) )
43eqeq2d 2106 . 2  |-  ( y  =  D  ->  ( S  =  ( C F y )  <->  S  =  ( C F D ) ) )
52, 4rspc2ev 2750 1  |-  ( ( C  e.  A  /\  D  e.  B  /\  S  =  ( C F D ) )  ->  E. x  e.  A  E. y  e.  B  S  =  ( x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 927    = wceq 1296    e. wcel 1445   E.wrex 2371  (class class class)co 5690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-iota 5014  df-fv 5057  df-ov 5693
This theorem is referenced by:  genpprecll  7170  genppreclu  7171  elz2  8916  znq  9208  qaddcl  9219  qmulcl  9221  qreccl  9226
  Copyright terms: Public domain W3C validator