ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4prl Unicode version

Theorem distrlem4prl 7586
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4prl  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Distinct variable groups:    x, y, z, f, A    x, B, y, z, f    x, C, y, z, f

Proof of Theorem distrlem4prl
Dummy variables  w  v  u  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7403 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
21adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
3 simp1 997 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  A  e.  P. )
4 simpll 527 . . . . . . 7  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  x  e.  ( 1st `  A
) )
5 prop 7477 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
6 elprnql 7483 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
75, 6sylan 283 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
83, 4, 7syl2an 289 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  x  e.  Q. )
9 simprl 529 . . . . . . 7  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  f  e.  ( 1st `  A
) )
10 elprnql 7483 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
115, 10sylan 283 . . . . . . 7  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
123, 9, 11syl2an 289 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
f  e.  Q. )
13 simpl2 1001 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  B  e.  P. )
14 simprlr 538 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
y  e.  ( 1st `  B ) )
15 prop 7477 . . . . . . . 8  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
16 elprnql 7483 . . . . . . . 8  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
1715, 16sylan 283 . . . . . . 7  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
1813, 14, 17syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
y  e.  Q. )
19 mulcomnqg 7385 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  .Q  v
)  =  ( v  .Q  w ) )
2019adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  .Q  v )  =  ( v  .Q  w ) )
212, 8, 12, 18, 20caovord2d 6047 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  <->  ( x  .Q  y ) 
<Q  ( f  .Q  y
) ) )
22 ltanqg 7402 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
2322adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
24 mulclnq 7378 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  e.  Q. )
258, 18, 24syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  y
)  e.  Q. )
26 mulclnq 7378 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q. )  ->  ( f  .Q  y
)  e.  Q. )
2712, 18, 26syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  y
)  e.  Q. )
28 simpl3 1002 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  C  e.  P. )
29 simprrr 540 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
z  e.  ( 1st `  C ) )
30 prop 7477 . . . . . . . . 9  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
31 elprnql 7483 . . . . . . . . 9  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
3230, 31sylan 283 . . . . . . . 8  |-  ( ( C  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
3328, 29, 32syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
z  e.  Q. )
34 mulclnq 7378 . . . . . . 7  |-  ( ( f  e.  Q.  /\  z  e.  Q. )  ->  ( f  .Q  z
)  e.  Q. )
3512, 33, 34syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  z
)  e.  Q. )
36 addcomnqg 7383 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  +Q  v
)  =  ( v  +Q  w ) )
3736adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  +Q  v )  =  ( v  +Q  w ) )
3823, 25, 27, 35, 37caovord2d 6047 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  <Q  (
f  .Q  y )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
f  .Q  y )  +Q  ( f  .Q  z ) ) ) )
3921, 38bitrd 188 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  <->  ( ( x  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( f  .Q  y )  +Q  (
f  .Q  z ) ) ) )
40 simpl1 1000 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  A  e.  P. )
41 addclpr 7539 . . . . . . . 8  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
42413adant1 1015 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C )  e. 
P. )
4342adantr 276 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( B  +P.  C
)  e.  P. )
44 mulclpr 7574 . . . . . 6  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
4540, 43, 44syl2anc 411 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
46 distrnqg 7389 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
f  .Q  ( y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z
) ) )
4712, 18, 33, 46syl3anc 1238 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z ) ) )
48 simprrl 539 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
f  e.  ( 1st `  A ) )
49 df-iplp 7470 . . . . . . . . . 10  |-  +P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  +Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  +Q  h
) ) } >. )
50 addclnq 7377 . . . . . . . . . 10  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
5149, 50genpprecll 7516 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  ->  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )
5251imp 124 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )
5313, 28, 14, 29, 52syl22anc 1239 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( y  +Q  z
)  e.  ( 1st `  ( B  +P.  C
) ) )
54 df-imp 7471 . . . . . . . . 9  |-  .P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  .Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  .Q  h
) ) } >. )
55 mulclnq 7378 . . . . . . . . 9  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
5654, 55genpprecll 7516 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( f  e.  ( 1st `  A
)  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( f  .Q  ( y  +Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
5756imp 124 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )  ->  (
f  .Q  ( y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
5840, 43, 48, 53, 57syl22anc 1239 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
5947, 58eqeltrrd 2255 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
60 prop 7477 . . . . . 6  |-  ( ( A  .P.  ( B  +P.  C ) )  e.  P.  ->  <. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P. )
61 prcdnql 7486 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( f  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6260, 61sylan 283 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6345, 59, 62syl2anc 411 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6439, 63sylbid 150 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
652, 12, 8, 33, 20caovord2d 6047 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  <->  ( f  .Q  z ) 
<Q  ( x  .Q  z
) ) )
66 mulclnq 7378 . . . . . . 7  |-  ( ( x  e.  Q.  /\  z  e.  Q. )  ->  ( x  .Q  z
)  e.  Q. )
678, 33, 66syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  z
)  e.  Q. )
68 ltanqg 7402 . . . . . 6  |-  ( ( ( f  .Q  z
)  e.  Q.  /\  ( x  .Q  z
)  e.  Q.  /\  ( x  .Q  y
)  e.  Q. )  ->  ( ( f  .Q  z )  <Q  (
x  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) ) )
6935, 67, 25, 68syl3anc 1238 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( f  .Q  z )  <Q  (
x  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) ) )
7065, 69bitrd 188 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  <->  ( ( x  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
71 distrnqg 7389 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
728, 18, 33, 71syl3anc 1238 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z ) ) )
73 simprll 537 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  x  e.  ( 1st `  A ) )
7454, 55genpprecll 7516 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( x  e.  ( 1st `  A
)  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( x  .Q  ( y  +Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7574imp 124 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )  ->  (
x  .Q  ( y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
7640, 43, 73, 53, 75syl22anc 1239 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
7772, 76eqeltrrd 2255 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
78 prcdnql 7486 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7960, 78sylan 283 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8045, 77, 79syl2anc 411 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8170, 80sylbid 150 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8264, 81jaod 717 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
83 ltsonq 7400 . . . . 5  |-  <Q  Or  Q.
84 nqtri3or 7398 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  \/  x  =  f  \/  f  <Q  x ) )
8583, 84sotritrieq 4327 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
868, 12, 85syl2anc 411 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
87 oveq1 5885 . . . . . . 7  |-  ( x  =  f  ->  (
x  .Q  z )  =  ( f  .Q  z ) )
8887oveq2d 5894 . . . . . 6  |-  ( x  =  f  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) ) )
8972, 88sylan9eq 2230 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
9076adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
9189, 90eqeltrrd 2255 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
9291ex 115 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  =  f  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
9386, 92sylbird 170 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( -.  ( x 
<Q  f  \/  f  <Q  x )  ->  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
94 ltdcnq 7399 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  x 
<Q  f )
95 ltdcnq 7399 . . . . . 6  |-  ( ( f  e.  Q.  /\  x  e.  Q. )  -> DECID  f 
<Q  x )
9695ancoms 268 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  f 
<Q  x )
97 dcor 935 . . . . 5  |-  (DECID  x  <Q  f  ->  (DECID  f  <Q  x  -> DECID  ( x 
<Q  f  \/  f  <Q  x ) ) )
9894, 96, 97sylc 62 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  ( x  <Q  f  \/  f  <Q  x ) )
998, 12, 98syl2anc 411 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> DECID  (
x  <Q  f  \/  f  <Q  x ) )
100 df-dc 835 . . 3  |-  (DECID  ( x 
<Q  f  \/  f  <Q  x )  <->  ( (
x  <Q  f  \/  f  <Q  x )  \/  -.  ( x  <Q  f  \/  f  <Q  x )
) )
10199, 100sylib 122 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  \/  -.  (
x  <Q  f  \/  f  <Q  x ) ) )
10282, 93, 101mpjaod 718 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005   ` cfv 5218  (class class class)co 5878   1stc1st 6142   2ndc2nd 6143   Q.cnq 7282    +Q cplq 7284    .Q cmq 7285    <Q cltq 7287   P.cnp 7293    +P. cpp 7295    .P. cmp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-2o 6421  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-enq0 7426  df-nq0 7427  df-0nq0 7428  df-plq0 7429  df-mq0 7430  df-inp 7468  df-iplp 7470  df-imp 7471
This theorem is referenced by:  distrlem5prl  7588
  Copyright terms: Public domain W3C validator