| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrlem4prl | Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrlem4prl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmnqg 7514 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | simp1 1000 |
. . . . . . 7
| |
| 4 | simpll 527 |
. . . . . . 7
| |
| 5 | prop 7588 |
. . . . . . . 8
| |
| 6 | elprnql 7594 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylan 283 |
. . . . . . 7
|
| 8 | 3, 4, 7 | syl2an 289 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . . 7
| |
| 10 | elprnql 7594 |
. . . . . . . 8
| |
| 11 | 5, 10 | sylan 283 |
. . . . . . 7
|
| 12 | 3, 9, 11 | syl2an 289 |
. . . . . 6
|
| 13 | simpl2 1004 |
. . . . . . 7
| |
| 14 | simprlr 538 |
. . . . . . 7
| |
| 15 | prop 7588 |
. . . . . . . 8
| |
| 16 | elprnql 7594 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylan 283 |
. . . . . . 7
|
| 18 | 13, 14, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | mulcomnqg 7496 |
. . . . . . 7
| |
| 20 | 19 | adantl 277 |
. . . . . 6
|
| 21 | 2, 8, 12, 18, 20 | caovord2d 6116 |
. . . . 5
|
| 22 | ltanqg 7513 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | mulclnq 7489 |
. . . . . . 7
| |
| 25 | 8, 18, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | mulclnq 7489 |
. . . . . . 7
| |
| 27 | 12, 18, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | simpl3 1005 |
. . . . . . . 8
| |
| 29 | simprrr 540 |
. . . . . . . 8
| |
| 30 | prop 7588 |
. . . . . . . . 9
| |
| 31 | elprnql 7594 |
. . . . . . . . 9
| |
| 32 | 30, 31 | sylan 283 |
. . . . . . . 8
|
| 33 | 28, 29, 32 | syl2anc 411 |
. . . . . . 7
|
| 34 | mulclnq 7489 |
. . . . . . 7
| |
| 35 | 12, 33, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | addcomnqg 7494 |
. . . . . . 7
| |
| 37 | 36 | adantl 277 |
. . . . . 6
|
| 38 | 23, 25, 27, 35, 37 | caovord2d 6116 |
. . . . 5
|
| 39 | 21, 38 | bitrd 188 |
. . . 4
|
| 40 | simpl1 1003 |
. . . . . 6
| |
| 41 | addclpr 7650 |
. . . . . . . 8
| |
| 42 | 41 | 3adant1 1018 |
. . . . . . 7
|
| 43 | 42 | adantr 276 |
. . . . . 6
|
| 44 | mulclpr 7685 |
. . . . . 6
| |
| 45 | 40, 43, 44 | syl2anc 411 |
. . . . 5
|
| 46 | distrnqg 7500 |
. . . . . . 7
| |
| 47 | 12, 18, 33, 46 | syl3anc 1250 |
. . . . . 6
|
| 48 | simprrl 539 |
. . . . . . 7
| |
| 49 | df-iplp 7581 |
. . . . . . . . . 10
| |
| 50 | addclnq 7488 |
. . . . . . . . . 10
| |
| 51 | 49, 50 | genpprecll 7627 |
. . . . . . . . 9
|
| 52 | 51 | imp 124 |
. . . . . . . 8
|
| 53 | 13, 28, 14, 29, 52 | syl22anc 1251 |
. . . . . . 7
|
| 54 | df-imp 7582 |
. . . . . . . . 9
| |
| 55 | mulclnq 7489 |
. . . . . . . . 9
| |
| 56 | 54, 55 | genpprecll 7627 |
. . . . . . . 8
|
| 57 | 56 | imp 124 |
. . . . . . 7
|
| 58 | 40, 43, 48, 53, 57 | syl22anc 1251 |
. . . . . 6
|
| 59 | 47, 58 | eqeltrrd 2283 |
. . . . 5
|
| 60 | prop 7588 |
. . . . . 6
| |
| 61 | prcdnql 7597 |
. . . . . 6
| |
| 62 | 60, 61 | sylan 283 |
. . . . 5
|
| 63 | 45, 59, 62 | syl2anc 411 |
. . . 4
|
| 64 | 39, 63 | sylbid 150 |
. . 3
|
| 65 | 2, 12, 8, 33, 20 | caovord2d 6116 |
. . . . 5
|
| 66 | mulclnq 7489 |
. . . . . . 7
| |
| 67 | 8, 33, 66 | syl2anc 411 |
. . . . . 6
|
| 68 | ltanqg 7513 |
. . . . . 6
| |
| 69 | 35, 67, 25, 68 | syl3anc 1250 |
. . . . 5
|
| 70 | 65, 69 | bitrd 188 |
. . . 4
|
| 71 | distrnqg 7500 |
. . . . . . 7
| |
| 72 | 8, 18, 33, 71 | syl3anc 1250 |
. . . . . 6
|
| 73 | simprll 537 |
. . . . . . 7
| |
| 74 | 54, 55 | genpprecll 7627 |
. . . . . . . 8
|
| 75 | 74 | imp 124 |
. . . . . . 7
|
| 76 | 40, 43, 73, 53, 75 | syl22anc 1251 |
. . . . . 6
|
| 77 | 72, 76 | eqeltrrd 2283 |
. . . . 5
|
| 78 | prcdnql 7597 |
. . . . . 6
| |
| 79 | 60, 78 | sylan 283 |
. . . . 5
|
| 80 | 45, 77, 79 | syl2anc 411 |
. . . 4
|
| 81 | 70, 80 | sylbid 150 |
. . 3
|
| 82 | 64, 81 | jaod 719 |
. 2
|
| 83 | ltsonq 7511 |
. . . . 5
| |
| 84 | nqtri3or 7509 |
. . . . 5
| |
| 85 | 83, 84 | sotritrieq 4372 |
. . . 4
|
| 86 | 8, 12, 85 | syl2anc 411 |
. . 3
|
| 87 | oveq1 5951 |
. . . . . . 7
| |
| 88 | 87 | oveq2d 5960 |
. . . . . 6
|
| 89 | 72, 88 | sylan9eq 2258 |
. . . . 5
|
| 90 | 76 | adantr 276 |
. . . . 5
|
| 91 | 89, 90 | eqeltrrd 2283 |
. . . 4
|
| 92 | 91 | ex 115 |
. . 3
|
| 93 | 86, 92 | sylbird 170 |
. 2
|
| 94 | ltdcnq 7510 |
. . . . 5
| |
| 95 | ltdcnq 7510 |
. . . . . 6
| |
| 96 | 95 | ancoms 268 |
. . . . 5
|
| 97 | dcor 938 |
. . . . 5
| |
| 98 | 94, 96, 97 | sylc 62 |
. . . 4
|
| 99 | 8, 12, 98 | syl2anc 411 |
. . 3
|
| 100 | df-dc 837 |
. . 3
| |
| 101 | 99, 100 | sylib 122 |
. 2
|
| 102 | 82, 93, 101 | mpjaod 720 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-iplp 7581 df-imp 7582 |
| This theorem is referenced by: distrlem5prl 7699 |
| Copyright terms: Public domain | W3C validator |