ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4prl Unicode version

Theorem distrlem4prl 7525
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4prl  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Distinct variable groups:    x, y, z, f, A    x, B, y, z, f    x, C, y, z, f

Proof of Theorem distrlem4prl
Dummy variables  w  v  u  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7342 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
21adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
3 simp1 987 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  A  e.  P. )
4 simpll 519 . . . . . . 7  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  x  e.  ( 1st `  A
) )
5 prop 7416 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
6 elprnql 7422 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
75, 6sylan 281 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
83, 4, 7syl2an 287 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  x  e.  Q. )
9 simprl 521 . . . . . . 7  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  f  e.  ( 1st `  A
) )
10 elprnql 7422 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
115, 10sylan 281 . . . . . . 7  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
123, 9, 11syl2an 287 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
f  e.  Q. )
13 simpl2 991 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  B  e.  P. )
14 simprlr 528 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
y  e.  ( 1st `  B ) )
15 prop 7416 . . . . . . . 8  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
16 elprnql 7422 . . . . . . . 8  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
1715, 16sylan 281 . . . . . . 7  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
1813, 14, 17syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
y  e.  Q. )
19 mulcomnqg 7324 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  .Q  v
)  =  ( v  .Q  w ) )
2019adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  .Q  v )  =  ( v  .Q  w ) )
212, 8, 12, 18, 20caovord2d 6011 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  <->  ( x  .Q  y ) 
<Q  ( f  .Q  y
) ) )
22 ltanqg 7341 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
2322adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
24 mulclnq 7317 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  e.  Q. )
258, 18, 24syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  y
)  e.  Q. )
26 mulclnq 7317 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q. )  ->  ( f  .Q  y
)  e.  Q. )
2712, 18, 26syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  y
)  e.  Q. )
28 simpl3 992 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  C  e.  P. )
29 simprrr 530 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
z  e.  ( 1st `  C ) )
30 prop 7416 . . . . . . . . 9  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
31 elprnql 7422 . . . . . . . . 9  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
3230, 31sylan 281 . . . . . . . 8  |-  ( ( C  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
3328, 29, 32syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
z  e.  Q. )
34 mulclnq 7317 . . . . . . 7  |-  ( ( f  e.  Q.  /\  z  e.  Q. )  ->  ( f  .Q  z
)  e.  Q. )
3512, 33, 34syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  z
)  e.  Q. )
36 addcomnqg 7322 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  +Q  v
)  =  ( v  +Q  w ) )
3736adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  +Q  v )  =  ( v  +Q  w ) )
3823, 25, 27, 35, 37caovord2d 6011 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  <Q  (
f  .Q  y )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
f  .Q  y )  +Q  ( f  .Q  z ) ) ) )
3921, 38bitrd 187 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  <->  ( ( x  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( f  .Q  y )  +Q  (
f  .Q  z ) ) ) )
40 simpl1 990 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  A  e.  P. )
41 addclpr 7478 . . . . . . . 8  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
42413adant1 1005 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C )  e. 
P. )
4342adantr 274 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( B  +P.  C
)  e.  P. )
44 mulclpr 7513 . . . . . 6  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
4540, 43, 44syl2anc 409 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
46 distrnqg 7328 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
f  .Q  ( y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z
) ) )
4712, 18, 33, 46syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z ) ) )
48 simprrl 529 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
f  e.  ( 1st `  A ) )
49 df-iplp 7409 . . . . . . . . . 10  |-  +P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  +Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  +Q  h
) ) } >. )
50 addclnq 7316 . . . . . . . . . 10  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
5149, 50genpprecll 7455 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  ->  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )
5251imp 123 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )
5313, 28, 14, 29, 52syl22anc 1229 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( y  +Q  z
)  e.  ( 1st `  ( B  +P.  C
) ) )
54 df-imp 7410 . . . . . . . . 9  |-  .P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  .Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  .Q  h
) ) } >. )
55 mulclnq 7317 . . . . . . . . 9  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
5654, 55genpprecll 7455 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( f  e.  ( 1st `  A
)  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( f  .Q  ( y  +Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
5756imp 123 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )  ->  (
f  .Q  ( y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
5840, 43, 48, 53, 57syl22anc 1229 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
5947, 58eqeltrrd 2244 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
60 prop 7416 . . . . . 6  |-  ( ( A  .P.  ( B  +P.  C ) )  e.  P.  ->  <. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P. )
61 prcdnql 7425 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( f  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6260, 61sylan 281 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6345, 59, 62syl2anc 409 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6439, 63sylbid 149 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
652, 12, 8, 33, 20caovord2d 6011 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  <->  ( f  .Q  z ) 
<Q  ( x  .Q  z
) ) )
66 mulclnq 7317 . . . . . . 7  |-  ( ( x  e.  Q.  /\  z  e.  Q. )  ->  ( x  .Q  z
)  e.  Q. )
678, 33, 66syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  z
)  e.  Q. )
68 ltanqg 7341 . . . . . 6  |-  ( ( ( f  .Q  z
)  e.  Q.  /\  ( x  .Q  z
)  e.  Q.  /\  ( x  .Q  y
)  e.  Q. )  ->  ( ( f  .Q  z )  <Q  (
x  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) ) )
6935, 67, 25, 68syl3anc 1228 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( f  .Q  z )  <Q  (
x  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) ) )
7065, 69bitrd 187 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  <->  ( ( x  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
71 distrnqg 7328 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
728, 18, 33, 71syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z ) ) )
73 simprll 527 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  x  e.  ( 1st `  A ) )
7454, 55genpprecll 7455 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( x  e.  ( 1st `  A
)  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( x  .Q  ( y  +Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7574imp 123 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )  ->  (
x  .Q  ( y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
7640, 43, 73, 53, 75syl22anc 1229 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
7772, 76eqeltrrd 2244 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
78 prcdnql 7425 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7960, 78sylan 281 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8045, 77, 79syl2anc 409 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8170, 80sylbid 149 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8264, 81jaod 707 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
83 ltsonq 7339 . . . . 5  |-  <Q  Or  Q.
84 nqtri3or 7337 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  \/  x  =  f  \/  f  <Q  x ) )
8583, 84sotritrieq 4303 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
868, 12, 85syl2anc 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
87 oveq1 5849 . . . . . . 7  |-  ( x  =  f  ->  (
x  .Q  z )  =  ( f  .Q  z ) )
8887oveq2d 5858 . . . . . 6  |-  ( x  =  f  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) ) )
8972, 88sylan9eq 2219 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
9076adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
9189, 90eqeltrrd 2244 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
9291ex 114 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  =  f  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
9386, 92sylbird 169 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( -.  ( x 
<Q  f  \/  f  <Q  x )  ->  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
94 ltdcnq 7338 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  x 
<Q  f )
95 ltdcnq 7338 . . . . . 6  |-  ( ( f  e.  Q.  /\  x  e.  Q. )  -> DECID  f 
<Q  x )
9695ancoms 266 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  f 
<Q  x )
97 dcor 925 . . . . 5  |-  (DECID  x  <Q  f  ->  (DECID  f  <Q  x  -> DECID  ( x 
<Q  f  \/  f  <Q  x ) ) )
9894, 96, 97sylc 62 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  ( x  <Q  f  \/  f  <Q  x ) )
998, 12, 98syl2anc 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> DECID  (
x  <Q  f  \/  f  <Q  x ) )
100 df-dc 825 . . 3  |-  (DECID  ( x 
<Q  f  \/  f  <Q  x )  <->  ( (
x  <Q  f  \/  f  <Q  x )  \/  -.  ( x  <Q  f  \/  f  <Q  x )
) )
10199, 100sylib 121 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  \/  -.  (
x  <Q  f  \/  f  <Q  x ) ) )
10282, 93, 101mpjaod 708 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    +Q cplq 7223    .Q cmq 7224    <Q cltq 7226   P.cnp 7232    +P. cpp 7234    .P. cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-imp 7410
This theorem is referenced by:  distrlem5prl  7527
  Copyright terms: Public domain W3C validator