ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpr Unicode version

Theorem mulclpr 7720
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
mulclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )

Proof of Theorem mulclpr
Dummy variables  q  r  t  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7617 . . . 4  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  .Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  .Q  z
) ) } >. )
21genpelxp 7659 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  ( ~P Q.  X.  ~P Q. ) )
3 mulclnq 7524 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
41, 3genpml 7665 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B
) ) )
51, 3genpmu 7666 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. r  e.  Q.  r  e.  ( 2nd `  ( A  .P.  B
) ) )
62, 4, 5jca32 310 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  .P.  B )  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
7 ltmnqg 7549 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
8 mulcomnqg 7531 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  =  ( y  .Q  x ) )
9 mulnqprl 7716 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  u  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  t  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
u  .Q  t )  ->  x  e.  ( 1st `  ( A  .P.  B ) ) ) )
101, 3, 7, 8, 9genprndl 7669 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) ) )
11 mulnqpru 7717 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  u  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  t  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( u  .Q  t )  <Q  x  ->  x  e.  ( 2nd `  ( A  .P.  B
) ) ) )
121, 3, 7, 8, 11genprndu 7670 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
1310, 12jca 306 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
141, 3, 7, 8genpdisj 7671 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) )
15 mullocpr 7719 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
1613, 14, 153jca 1180 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
17 elnp1st2nd 7624 . 2  |-  ( ( A  .P.  B )  e.  P.  <->  ( (
( A  .P.  B
)  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) ) )
186, 16, 17sylanbrc 417 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2178   A.wral 2486   E.wrex 2487   ~Pcpw 3626   class class class wbr 4059    X. cxp 4691   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428    .Q cmq 7431    <Q cltq 7433   P.cnp 7439    .P. cmp 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-imp 7617
This theorem is referenced by:  mulnqprlemfl  7723  mulnqprlemfu  7724  mulnqpr  7725  mulassprg  7729  distrlem1prl  7730  distrlem1pru  7731  distrlem4prl  7732  distrlem4pru  7733  distrlem5prl  7734  distrlem5pru  7735  distrprg  7736  1idpr  7740  recexprlemex  7785  ltmprr  7790  mulcmpblnrlemg  7888  mulcmpblnr  7889  mulclsr  7902  mulcomsrg  7905  mulasssrg  7906  distrsrg  7907  m1m1sr  7909  1idsr  7916  00sr  7917  recexgt0sr  7921  mulgt0sr  7926  mulextsr1lem  7928  mulextsr1  7929  recidpirq  8006
  Copyright terms: Public domain W3C validator