| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpr | Unicode version | ||
| Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| mulclpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-imp 7656 |
. . . 4
| |
| 2 | 1 | genpelxp 7698 |
. . 3
|
| 3 | mulclnq 7563 |
. . . 4
| |
| 4 | 1, 3 | genpml 7704 |
. . 3
|
| 5 | 1, 3 | genpmu 7705 |
. . 3
|
| 6 | 2, 4, 5 | jca32 310 |
. 2
|
| 7 | ltmnqg 7588 |
. . . . 5
| |
| 8 | mulcomnqg 7570 |
. . . . 5
| |
| 9 | mulnqprl 7755 |
. . . . 5
| |
| 10 | 1, 3, 7, 8, 9 | genprndl 7708 |
. . . 4
|
| 11 | mulnqpru 7756 |
. . . . 5
| |
| 12 | 1, 3, 7, 8, 11 | genprndu 7709 |
. . . 4
|
| 13 | 10, 12 | jca 306 |
. . 3
|
| 14 | 1, 3, 7, 8 | genpdisj 7710 |
. . 3
|
| 15 | mullocpr 7758 |
. . 3
| |
| 16 | 13, 14, 15 | 3jca 1201 |
. 2
|
| 17 | elnp1st2nd 7663 |
. 2
| |
| 18 | 6, 16, 17 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-imp 7656 |
| This theorem is referenced by: mulnqprlemfl 7762 mulnqprlemfu 7763 mulnqpr 7764 mulassprg 7768 distrlem1prl 7769 distrlem1pru 7770 distrlem4prl 7771 distrlem4pru 7772 distrlem5prl 7773 distrlem5pru 7774 distrprg 7775 1idpr 7779 recexprlemex 7824 ltmprr 7829 mulcmpblnrlemg 7927 mulcmpblnr 7928 mulclsr 7941 mulcomsrg 7944 mulasssrg 7945 distrsrg 7946 m1m1sr 7948 1idsr 7955 00sr 7956 recexgt0sr 7960 mulgt0sr 7965 mulextsr1lem 7967 mulextsr1 7968 recidpirq 8045 |
| Copyright terms: Public domain | W3C validator |