ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpr Unicode version

Theorem mulclpr 7380
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
mulclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )

Proof of Theorem mulclpr
Dummy variables  q  r  t  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7277 . . . 4  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  .Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  .Q  z
) ) } >. )
21genpelxp 7319 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  ( ~P Q.  X.  ~P Q. ) )
3 mulclnq 7184 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
41, 3genpml 7325 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B
) ) )
51, 3genpmu 7326 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. r  e.  Q.  r  e.  ( 2nd `  ( A  .P.  B
) ) )
62, 4, 5jca32 308 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  .P.  B )  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
7 ltmnqg 7209 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
8 mulcomnqg 7191 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  =  ( y  .Q  x ) )
9 mulnqprl 7376 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  u  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  t  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
u  .Q  t )  ->  x  e.  ( 1st `  ( A  .P.  B ) ) ) )
101, 3, 7, 8, 9genprndl 7329 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) ) )
11 mulnqpru 7377 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  u  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  t  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( u  .Q  t )  <Q  x  ->  x  e.  ( 2nd `  ( A  .P.  B
) ) ) )
121, 3, 7, 8, 11genprndu 7330 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
1310, 12jca 304 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
141, 3, 7, 8genpdisj 7331 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) )
15 mullocpr 7379 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
1613, 14, 153jca 1161 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
17 elnp1st2nd 7284 . 2  |-  ( ( A  .P.  B )  e.  P.  <->  ( (
( A  .P.  B
)  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) ) )
186, 16, 17sylanbrc 413 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    e. wcel 1480   A.wral 2416   E.wrex 2417   ~Pcpw 3510   class class class wbr 3929    X. cxp 4537   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088    .Q cmq 7091    <Q cltq 7093   P.cnp 7099    .P. cmp 7102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-imp 7277
This theorem is referenced by:  mulnqprlemfl  7383  mulnqprlemfu  7384  mulnqpr  7385  mulassprg  7389  distrlem1prl  7390  distrlem1pru  7391  distrlem4prl  7392  distrlem4pru  7393  distrlem5prl  7394  distrlem5pru  7395  distrprg  7396  1idpr  7400  recexprlemex  7445  ltmprr  7450  mulcmpblnrlemg  7548  mulcmpblnr  7549  mulclsr  7562  mulcomsrg  7565  mulasssrg  7566  distrsrg  7567  m1m1sr  7569  1idsr  7576  00sr  7577  recexgt0sr  7581  mulgt0sr  7586  mulextsr1lem  7588  mulextsr1  7589  recidpirq  7666
  Copyright terms: Public domain W3C validator