ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpr Unicode version

Theorem mulclpr 7639
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
mulclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )

Proof of Theorem mulclpr
Dummy variables  q  r  t  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7536 . . . 4  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  .Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  .Q  z
) ) } >. )
21genpelxp 7578 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  ( ~P Q.  X.  ~P Q. ) )
3 mulclnq 7443 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
41, 3genpml 7584 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B
) ) )
51, 3genpmu 7585 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. r  e.  Q.  r  e.  ( 2nd `  ( A  .P.  B
) ) )
62, 4, 5jca32 310 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  .P.  B )  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
7 ltmnqg 7468 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
8 mulcomnqg 7450 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  =  ( y  .Q  x ) )
9 mulnqprl 7635 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  u  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  t  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
u  .Q  t )  ->  x  e.  ( 1st `  ( A  .P.  B ) ) ) )
101, 3, 7, 8, 9genprndl 7588 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) ) )
11 mulnqpru 7636 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  u  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  t  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( u  .Q  t )  <Q  x  ->  x  e.  ( 2nd `  ( A  .P.  B
) ) ) )
121, 3, 7, 8, 11genprndu 7589 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
1310, 12jca 306 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
141, 3, 7, 8genpdisj 7590 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) )
15 mullocpr 7638 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
1613, 14, 153jca 1179 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
17 elnp1st2nd 7543 . 2  |-  ( ( A  .P.  B )  e.  P.  <->  ( (
( A  .P.  B
)  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  .P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  .P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  .P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  .P.  B ) )  /\  q  e.  ( 2nd `  ( A  .P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) ) )
186, 16, 17sylanbrc 417 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2167   A.wral 2475   E.wrex 2476   ~Pcpw 3605   class class class wbr 4033    X. cxp 4661   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    .Q cmq 7350    <Q cltq 7352   P.cnp 7358    .P. cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-imp 7536
This theorem is referenced by:  mulnqprlemfl  7642  mulnqprlemfu  7643  mulnqpr  7644  mulassprg  7648  distrlem1prl  7649  distrlem1pru  7650  distrlem4prl  7651  distrlem4pru  7652  distrlem5prl  7653  distrlem5pru  7654  distrprg  7655  1idpr  7659  recexprlemex  7704  ltmprr  7709  mulcmpblnrlemg  7807  mulcmpblnr  7808  mulclsr  7821  mulcomsrg  7824  mulasssrg  7825  distrsrg  7826  m1m1sr  7828  1idsr  7835  00sr  7836  recexgt0sr  7840  mulgt0sr  7845  mulextsr1lem  7847  mulextsr1  7848  recidpirq  7925
  Copyright terms: Public domain W3C validator