ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp Unicode version

Definition df-iplp 7581
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example,  r  e.  ( 1st `  x ) implies 
r  e.  Q.) and can be simplified as shown at genpdf 7621.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7406 . 2  class  +P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7404 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1372 . . . . . . . . 9  class  r
72cv 1372 . . . . . . . . . 10  class  x
8 c1st 6224 . . . . . . . . . 10  class  1st
97, 8cfv 5271 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2176 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1372 . . . . . . . . 9  class  s
133cv 1372 . . . . . . . . . 10  class  y
1413, 8cfv 5271 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2176 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1372 . . . . . . . . 9  class  q
18 cplq 7395 . . . . . . . . . 10  class  +Q
196, 12, 18co 5944 . . . . . . . . 9  class  ( r  +Q  s )
2017, 19wceq 1373 . . . . . . . 8  wff  q  =  ( r  +Q  s
)
2110, 15, 20w3a 981 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
22 cnq 7393 . . . . . . 7  class  Q.
2321, 11, 22wrex 2485 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2423, 5, 22wrex 2485 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2524, 16, 22crab 2488 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) }
26 c2nd 6225 . . . . . . . . . 10  class  2nd
277, 26cfv 5271 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2176 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5271 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2176 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 981 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3231, 11, 22wrex 2485 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3332, 5, 22wrex 2485 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3433, 16, 22crab 2488 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) ) }
3525, 34cop 3636 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5946 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
371, 36wceq 1373 1  wff  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7642  addnqpru  7643  addclpr  7650  plpvlu  7651  dmplp  7653  addnqprlemrl  7670  addnqprlemru  7671  addassprg  7692  distrlem1prl  7695  distrlem1pru  7696  distrlem4prl  7697  distrlem4pru  7698  distrlem5prl  7699  distrlem5pru  7700  ltaddpr  7710  ltexprlemfl  7722  ltexprlemrl  7723  ltexprlemfu  7724  ltexprlemru  7725  addcanprleml  7727  addcanprlemu  7728  cauappcvgprlemladdfu  7767  cauappcvgprlemladdfl  7768  caucvgprlemladdfu  7790
  Copyright terms: Public domain W3C validator