ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp Unicode version

Definition df-iplp 7530
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example,  r  e.  ( 1st `  x ) implies 
r  e.  Q.) and can be simplified as shown at genpdf 7570.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7355 . 2  class  +P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7353 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1363 . . . . . . . . 9  class  r
72cv 1363 . . . . . . . . . 10  class  x
8 c1st 6193 . . . . . . . . . 10  class  1st
97, 8cfv 5255 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2164 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1363 . . . . . . . . 9  class  s
133cv 1363 . . . . . . . . . 10  class  y
1413, 8cfv 5255 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2164 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1363 . . . . . . . . 9  class  q
18 cplq 7344 . . . . . . . . . 10  class  +Q
196, 12, 18co 5919 . . . . . . . . 9  class  ( r  +Q  s )
2017, 19wceq 1364 . . . . . . . 8  wff  q  =  ( r  +Q  s
)
2110, 15, 20w3a 980 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
22 cnq 7342 . . . . . . 7  class  Q.
2321, 11, 22wrex 2473 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2423, 5, 22wrex 2473 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2524, 16, 22crab 2476 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) }
26 c2nd 6194 . . . . . . . . . 10  class  2nd
277, 26cfv 5255 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2164 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5255 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2164 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 980 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3231, 11, 22wrex 2473 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3332, 5, 22wrex 2473 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3433, 16, 22crab 2476 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) ) }
3525, 34cop 3622 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5921 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
371, 36wceq 1364 1  wff  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7591  addnqpru  7592  addclpr  7599  plpvlu  7600  dmplp  7602  addnqprlemrl  7619  addnqprlemru  7620  addassprg  7641  distrlem1prl  7644  distrlem1pru  7645  distrlem4prl  7646  distrlem4pru  7647  distrlem5prl  7648  distrlem5pru  7649  ltaddpr  7659  ltexprlemfl  7671  ltexprlemrl  7672  ltexprlemfu  7673  ltexprlemru  7674  addcanprleml  7676  addcanprlemu  7677  cauappcvgprlemladdfu  7716  cauappcvgprlemladdfl  7717  caucvgprlemladdfu  7739
  Copyright terms: Public domain W3C validator