ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp Unicode version

Definition df-iplp 7535
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example,  r  e.  ( 1st `  x ) implies 
r  e.  Q.) and can be simplified as shown at genpdf 7575.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7360 . 2  class  +P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7358 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1363 . . . . . . . . 9  class  r
72cv 1363 . . . . . . . . . 10  class  x
8 c1st 6196 . . . . . . . . . 10  class  1st
97, 8cfv 5258 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2167 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1363 . . . . . . . . 9  class  s
133cv 1363 . . . . . . . . . 10  class  y
1413, 8cfv 5258 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2167 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1363 . . . . . . . . 9  class  q
18 cplq 7349 . . . . . . . . . 10  class  +Q
196, 12, 18co 5922 . . . . . . . . 9  class  ( r  +Q  s )
2017, 19wceq 1364 . . . . . . . 8  wff  q  =  ( r  +Q  s
)
2110, 15, 20w3a 980 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
22 cnq 7347 . . . . . . 7  class  Q.
2321, 11, 22wrex 2476 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2423, 5, 22wrex 2476 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2524, 16, 22crab 2479 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) }
26 c2nd 6197 . . . . . . . . . 10  class  2nd
277, 26cfv 5258 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2167 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5258 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2167 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 980 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3231, 11, 22wrex 2476 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3332, 5, 22wrex 2476 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3433, 16, 22crab 2479 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) ) }
3525, 34cop 3625 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5924 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
371, 36wceq 1364 1  wff  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7596  addnqpru  7597  addclpr  7604  plpvlu  7605  dmplp  7607  addnqprlemrl  7624  addnqprlemru  7625  addassprg  7646  distrlem1prl  7649  distrlem1pru  7650  distrlem4prl  7651  distrlem4pru  7652  distrlem5prl  7653  distrlem5pru  7654  ltaddpr  7664  ltexprlemfl  7676  ltexprlemrl  7677  ltexprlemfu  7678  ltexprlemru  7679  addcanprleml  7681  addcanprlemu  7682  cauappcvgprlemladdfu  7721  cauappcvgprlemladdfl  7722  caucvgprlemladdfu  7744
  Copyright terms: Public domain W3C validator