ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp Unicode version

Definition df-iplp 7583
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example,  r  e.  ( 1st `  x ) implies 
r  e.  Q.) and can be simplified as shown at genpdf 7623.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7408 . 2  class  +P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7406 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1372 . . . . . . . . 9  class  r
72cv 1372 . . . . . . . . . 10  class  x
8 c1st 6226 . . . . . . . . . 10  class  1st
97, 8cfv 5272 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2176 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1372 . . . . . . . . 9  class  s
133cv 1372 . . . . . . . . . 10  class  y
1413, 8cfv 5272 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2176 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1372 . . . . . . . . 9  class  q
18 cplq 7397 . . . . . . . . . 10  class  +Q
196, 12, 18co 5946 . . . . . . . . 9  class  ( r  +Q  s )
2017, 19wceq 1373 . . . . . . . 8  wff  q  =  ( r  +Q  s
)
2110, 15, 20w3a 981 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
22 cnq 7395 . . . . . . 7  class  Q.
2321, 11, 22wrex 2485 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2423, 5, 22wrex 2485 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) )
2524, 16, 22crab 2488 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) }
26 c2nd 6227 . . . . . . . . . 10  class  2nd
277, 26cfv 5272 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2176 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5272 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2176 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 981 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3231, 11, 22wrex 2485 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3332, 5, 22wrex 2485 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) )
3433, 16, 22crab 2488 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  +Q  s ) ) }
3525, 34cop 3636 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5948 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
371, 36wceq 1373 1  wff  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7644  addnqpru  7645  addclpr  7652  plpvlu  7653  dmplp  7655  addnqprlemrl  7672  addnqprlemru  7673  addassprg  7694  distrlem1prl  7697  distrlem1pru  7698  distrlem4prl  7699  distrlem4pru  7700  distrlem5prl  7701  distrlem5pru  7702  ltaddpr  7712  ltexprlemfl  7724  ltexprlemrl  7725  ltexprlemfu  7726  ltexprlemru  7727  addcanprleml  7729  addcanprlemu  7730  cauappcvgprlemladdfu  7769  cauappcvgprlemladdfl  7770  caucvgprlemladdfu  7792
  Copyright terms: Public domain W3C validator