Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulnqprlemru | Unicode version |
Description: Lemma for mulnqpr 7480. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
Ref | Expression |
---|---|
mulnqprlemru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqprlu 7450 | . . . . . 6 | |
2 | nqprlu 7450 | . . . . . 6 | |
3 | df-imp 7372 | . . . . . . 7 | |
4 | mulclnq 7279 | . . . . . . 7 | |
5 | 3, 4 | genpelvu 7416 | . . . . . 6 |
6 | 1, 2, 5 | syl2an 287 | . . . . 5 |
7 | 6 | biimpa 294 | . . . 4 |
8 | vex 2715 | . . . . . . . . . . . . 13 | |
9 | breq2 3969 | . . . . . . . . . . . . 13 | |
10 | ltnqex 7452 | . . . . . . . . . . . . . 14 | |
11 | gtnqex 7453 | . . . . . . . . . . . . . 14 | |
12 | 10, 11 | op2nd 6089 | . . . . . . . . . . . . 13 |
13 | 8, 9, 12 | elab2 2860 | . . . . . . . . . . . 12 |
14 | 13 | biimpi 119 | . . . . . . . . . . 11 |
15 | 14 | ad2antrl 482 | . . . . . . . . . 10 |
16 | 15 | adantr 274 | . . . . . . . . 9 |
17 | vex 2715 | . . . . . . . . . . . . 13 | |
18 | breq2 3969 | . . . . . . . . . . . . 13 | |
19 | ltnqex 7452 | . . . . . . . . . . . . . 14 | |
20 | gtnqex 7453 | . . . . . . . . . . . . . 14 | |
21 | 19, 20 | op2nd 6089 | . . . . . . . . . . . . 13 |
22 | 17, 18, 21 | elab2 2860 | . . . . . . . . . . . 12 |
23 | 22 | biimpi 119 | . . . . . . . . . . 11 |
24 | 23 | ad2antll 483 | . . . . . . . . . 10 |
25 | 24 | adantr 274 | . . . . . . . . 9 |
26 | ltrelnq 7268 | . . . . . . . . . . . 12 | |
27 | 26 | brel 4635 | . . . . . . . . . . 11 |
28 | 16, 27 | syl 14 | . . . . . . . . . 10 |
29 | 26 | brel 4635 | . . . . . . . . . . 11 |
30 | 25, 29 | syl 14 | . . . . . . . . . 10 |
31 | lt2mulnq 7308 | . . . . . . . . . 10 | |
32 | 28, 30, 31 | syl2anc 409 | . . . . . . . . 9 |
33 | 16, 25, 32 | mp2and 430 | . . . . . . . 8 |
34 | breq2 3969 | . . . . . . . . 9 | |
35 | 34 | adantl 275 | . . . . . . . 8 |
36 | 33, 35 | mpbird 166 | . . . . . . 7 |
37 | vex 2715 | . . . . . . . 8 | |
38 | breq2 3969 | . . . . . . . 8 | |
39 | ltnqex 7452 | . . . . . . . . 9 | |
40 | gtnqex 7453 | . . . . . . . . 9 | |
41 | 39, 40 | op2nd 6089 | . . . . . . . 8 |
42 | 37, 38, 41 | elab2 2860 | . . . . . . 7 |
43 | 36, 42 | sylibr 133 | . . . . . 6 |
44 | 43 | ex 114 | . . . . 5 |
45 | 44 | rexlimdvva 2582 | . . . 4 |
46 | 7, 45 | mpd 13 | . . 3 |
47 | 46 | ex 114 | . 2 |
48 | 47 | ssrdv 3134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cab 2143 wrex 2436 wss 3102 cop 3563 class class class wbr 3965 cfv 5167 (class class class)co 5818 c2nd 6081 cnq 7183 cmq 7186 cltq 7188 cnp 7194 cmp 7197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-inp 7369 df-imp 7372 |
This theorem is referenced by: mulnqprlemfl 7478 mulnqpr 7480 |
Copyright terms: Public domain | W3C validator |