| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemru | Unicode version | ||
| Description: Lemma for mulnqpr 7672. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqprlu 7642 |
. . . . . 6
| |
| 2 | nqprlu 7642 |
. . . . . 6
| |
| 3 | df-imp 7564 |
. . . . . . 7
| |
| 4 | mulclnq 7471 |
. . . . . . 7
| |
| 5 | 3, 4 | genpelvu 7608 |
. . . . . 6
|
| 6 | 1, 2, 5 | syl2an 289 |
. . . . 5
|
| 7 | 6 | biimpa 296 |
. . . 4
|
| 8 | vex 2774 |
. . . . . . . . . . . . 13
| |
| 9 | breq2 4047 |
. . . . . . . . . . . . 13
| |
| 10 | ltnqex 7644 |
. . . . . . . . . . . . . 14
| |
| 11 | gtnqex 7645 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | op2nd 6223 |
. . . . . . . . . . . . 13
|
| 13 | 8, 9, 12 | elab2 2920 |
. . . . . . . . . . . 12
|
| 14 | 13 | biimpi 120 |
. . . . . . . . . . 11
|
| 15 | 14 | ad2antrl 490 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | vex 2774 |
. . . . . . . . . . . . 13
| |
| 18 | breq2 4047 |
. . . . . . . . . . . . 13
| |
| 19 | ltnqex 7644 |
. . . . . . . . . . . . . 14
| |
| 20 | gtnqex 7645 |
. . . . . . . . . . . . . 14
| |
| 21 | 19, 20 | op2nd 6223 |
. . . . . . . . . . . . 13
|
| 22 | 17, 18, 21 | elab2 2920 |
. . . . . . . . . . . 12
|
| 23 | 22 | biimpi 120 |
. . . . . . . . . . 11
|
| 24 | 23 | ad2antll 491 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 276 |
. . . . . . . . 9
|
| 26 | ltrelnq 7460 |
. . . . . . . . . . . 12
| |
| 27 | 26 | brel 4725 |
. . . . . . . . . . 11
|
| 28 | 16, 27 | syl 14 |
. . . . . . . . . 10
|
| 29 | 26 | brel 4725 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | syl 14 |
. . . . . . . . . 10
|
| 31 | lt2mulnq 7500 |
. . . . . . . . . 10
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . 9
|
| 33 | 16, 25, 32 | mp2and 433 |
. . . . . . . 8
|
| 34 | breq2 4047 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | 33, 35 | mpbird 167 |
. . . . . . 7
|
| 37 | vex 2774 |
. . . . . . . 8
| |
| 38 | breq2 4047 |
. . . . . . . 8
| |
| 39 | ltnqex 7644 |
. . . . . . . . 9
| |
| 40 | gtnqex 7645 |
. . . . . . . . 9
| |
| 41 | 39, 40 | op2nd 6223 |
. . . . . . . 8
|
| 42 | 37, 38, 41 | elab2 2920 |
. . . . . . 7
|
| 43 | 36, 42 | sylibr 134 |
. . . . . 6
|
| 44 | 43 | ex 115 |
. . . . 5
|
| 45 | 44 | rexlimdvva 2630 |
. . . 4
|
| 46 | 7, 45 | mpd 13 |
. . 3
|
| 47 | 46 | ex 115 |
. 2
|
| 48 | 47 | ssrdv 3198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4334 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-1o 6492 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-pli 7400 df-mi 7401 df-lti 7402 df-plpq 7439 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-plqqs 7444 df-mqqs 7445 df-1nqqs 7446 df-rq 7447 df-ltnqqs 7448 df-inp 7561 df-imp 7564 |
| This theorem is referenced by: mulnqprlemfl 7670 mulnqpr 7672 |
| Copyright terms: Public domain | W3C validator |