| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemru | Unicode version | ||
| Description: Lemma for mulnqpr 7760. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqprlu 7730 |
. . . . . 6
| |
| 2 | nqprlu 7730 |
. . . . . 6
| |
| 3 | df-imp 7652 |
. . . . . . 7
| |
| 4 | mulclnq 7559 |
. . . . . . 7
| |
| 5 | 3, 4 | genpelvu 7696 |
. . . . . 6
|
| 6 | 1, 2, 5 | syl2an 289 |
. . . . 5
|
| 7 | 6 | biimpa 296 |
. . . 4
|
| 8 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 9 | breq2 4086 |
. . . . . . . . . . . . 13
| |
| 10 | ltnqex 7732 |
. . . . . . . . . . . . . 14
| |
| 11 | gtnqex 7733 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | op2nd 6291 |
. . . . . . . . . . . . 13
|
| 13 | 8, 9, 12 | elab2 2951 |
. . . . . . . . . . . 12
|
| 14 | 13 | biimpi 120 |
. . . . . . . . . . 11
|
| 15 | 14 | ad2antrl 490 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 18 | breq2 4086 |
. . . . . . . . . . . . 13
| |
| 19 | ltnqex 7732 |
. . . . . . . . . . . . . 14
| |
| 20 | gtnqex 7733 |
. . . . . . . . . . . . . 14
| |
| 21 | 19, 20 | op2nd 6291 |
. . . . . . . . . . . . 13
|
| 22 | 17, 18, 21 | elab2 2951 |
. . . . . . . . . . . 12
|
| 23 | 22 | biimpi 120 |
. . . . . . . . . . 11
|
| 24 | 23 | ad2antll 491 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 276 |
. . . . . . . . 9
|
| 26 | ltrelnq 7548 |
. . . . . . . . . . . 12
| |
| 27 | 26 | brel 4770 |
. . . . . . . . . . 11
|
| 28 | 16, 27 | syl 14 |
. . . . . . . . . 10
|
| 29 | 26 | brel 4770 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | syl 14 |
. . . . . . . . . 10
|
| 31 | lt2mulnq 7588 |
. . . . . . . . . 10
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . 9
|
| 33 | 16, 25, 32 | mp2and 433 |
. . . . . . . 8
|
| 34 | breq2 4086 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | 33, 35 | mpbird 167 |
. . . . . . 7
|
| 37 | vex 2802 |
. . . . . . . 8
| |
| 38 | breq2 4086 |
. . . . . . . 8
| |
| 39 | ltnqex 7732 |
. . . . . . . . 9
| |
| 40 | gtnqex 7733 |
. . . . . . . . 9
| |
| 41 | 39, 40 | op2nd 6291 |
. . . . . . . 8
|
| 42 | 37, 38, 41 | elab2 2951 |
. . . . . . 7
|
| 43 | 36, 42 | sylibr 134 |
. . . . . 6
|
| 44 | 43 | ex 115 |
. . . . 5
|
| 45 | 44 | rexlimdvva 2656 |
. . . 4
|
| 46 | 7, 45 | mpd 13 |
. . 3
|
| 47 | 46 | ex 115 |
. 2
|
| 48 | 47 | ssrdv 3230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-inp 7649 df-imp 7652 |
| This theorem is referenced by: mulnqprlemfl 7758 mulnqpr 7760 |
| Copyright terms: Public domain | W3C validator |