| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > distrlem4pru | Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| distrlem4pru | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltmnqg 7468 | 
. . . . . . 7
 | |
| 2 | 1 | adantl 277 | 
. . . . . 6
 | 
| 3 | simp1 999 | 
. . . . . . 7
 | |
| 4 | simpll 527 | 
. . . . . . 7
 | |
| 5 | prop 7542 | 
. . . . . . . 8
 | |
| 6 | elprnqu 7549 | 
. . . . . . . 8
 | |
| 7 | 5, 6 | sylan 283 | 
. . . . . . 7
 | 
| 8 | 3, 4, 7 | syl2an 289 | 
. . . . . 6
 | 
| 9 | simprl 529 | 
. . . . . . 7
 | |
| 10 | elprnqu 7549 | 
. . . . . . . 8
 | |
| 11 | 5, 10 | sylan 283 | 
. . . . . . 7
 | 
| 12 | 3, 9, 11 | syl2an 289 | 
. . . . . 6
 | 
| 13 | simpl3 1004 | 
. . . . . . 7
 | |
| 14 | simprrr 540 | 
. . . . . . 7
 | |
| 15 | prop 7542 | 
. . . . . . . 8
 | |
| 16 | elprnqu 7549 | 
. . . . . . . 8
 | |
| 17 | 15, 16 | sylan 283 | 
. . . . . . 7
 | 
| 18 | 13, 14, 17 | syl2anc 411 | 
. . . . . 6
 | 
| 19 | mulcomnqg 7450 | 
. . . . . . 7
 | |
| 20 | 19 | adantl 277 | 
. . . . . 6
 | 
| 21 | 2, 8, 12, 18, 20 | caovord2d 6093 | 
. . . . 5
 | 
| 22 | mulclnq 7443 | 
. . . . . . 7
 | |
| 23 | 8, 18, 22 | syl2anc 411 | 
. . . . . 6
 | 
| 24 | mulclnq 7443 | 
. . . . . . 7
 | |
| 25 | 12, 18, 24 | syl2anc 411 | 
. . . . . 6
 | 
| 26 | simpl2 1003 | 
. . . . . . . 8
 | |
| 27 | simprlr 538 | 
. . . . . . . 8
 | |
| 28 | prop 7542 | 
. . . . . . . . 9
 | |
| 29 | elprnqu 7549 | 
. . . . . . . . 9
 | |
| 30 | 28, 29 | sylan 283 | 
. . . . . . . 8
 | 
| 31 | 26, 27, 30 | syl2anc 411 | 
. . . . . . 7
 | 
| 32 | mulclnq 7443 | 
. . . . . . 7
 | |
| 33 | 8, 31, 32 | syl2anc 411 | 
. . . . . 6
 | 
| 34 | ltanqg 7467 | 
. . . . . 6
 | |
| 35 | 23, 25, 33, 34 | syl3anc 1249 | 
. . . . 5
 | 
| 36 | 21, 35 | bitrd 188 | 
. . . 4
 | 
| 37 | simpl1 1002 | 
. . . . . 6
 | |
| 38 | addclpr 7604 | 
. . . . . . . 8
 | |
| 39 | 38 | 3adant1 1017 | 
. . . . . . 7
 | 
| 40 | 39 | adantr 276 | 
. . . . . 6
 | 
| 41 | mulclpr 7639 | 
. . . . . 6
 | |
| 42 | 37, 40, 41 | syl2anc 411 | 
. . . . 5
 | 
| 43 | distrnqg 7454 | 
. . . . . . 7
 | |
| 44 | 8, 31, 18, 43 | syl3anc 1249 | 
. . . . . 6
 | 
| 45 | simprll 537 | 
. . . . . . 7
 | |
| 46 | df-iplp 7535 | 
. . . . . . . . . 10
 | |
| 47 | addclnq 7442 | 
. . . . . . . . . 10
 | |
| 48 | 46, 47 | genppreclu 7582 | 
. . . . . . . . 9
 | 
| 49 | 48 | imp 124 | 
. . . . . . . 8
 | 
| 50 | 26, 13, 27, 14, 49 | syl22anc 1250 | 
. . . . . . 7
 | 
| 51 | df-imp 7536 | 
. . . . . . . . 9
 | |
| 52 | mulclnq 7443 | 
. . . . . . . . 9
 | |
| 53 | 51, 52 | genppreclu 7582 | 
. . . . . . . 8
 | 
| 54 | 53 | imp 124 | 
. . . . . . 7
 | 
| 55 | 37, 40, 45, 50, 54 | syl22anc 1250 | 
. . . . . 6
 | 
| 56 | 44, 55 | eqeltrrd 2274 | 
. . . . 5
 | 
| 57 | prop 7542 | 
. . . . . 6
 | |
| 58 | prcunqu 7552 | 
. . . . . 6
 | |
| 59 | 57, 58 | sylan 283 | 
. . . . 5
 | 
| 60 | 42, 56, 59 | syl2anc 411 | 
. . . 4
 | 
| 61 | 36, 60 | sylbid 150 | 
. . 3
 | 
| 62 | 2, 12, 8, 31, 20 | caovord2d 6093 | 
. . . . 5
 | 
| 63 | ltanqg 7467 | 
. . . . . . 7
 | |
| 64 | 63 | adantl 277 | 
. . . . . 6
 | 
| 65 | mulclnq 7443 | 
. . . . . . 7
 | |
| 66 | 12, 31, 65 | syl2anc 411 | 
. . . . . 6
 | 
| 67 | addcomnqg 7448 | 
. . . . . . 7
 | |
| 68 | 67 | adantl 277 | 
. . . . . 6
 | 
| 69 | 64, 66, 33, 25, 68 | caovord2d 6093 | 
. . . . 5
 | 
| 70 | 62, 69 | bitrd 188 | 
. . . 4
 | 
| 71 | distrnqg 7454 | 
. . . . . . 7
 | |
| 72 | 12, 31, 18, 71 | syl3anc 1249 | 
. . . . . 6
 | 
| 73 | simprrl 539 | 
. . . . . . 7
 | |
| 74 | 51, 52 | genppreclu 7582 | 
. . . . . . . 8
 | 
| 75 | 74 | imp 124 | 
. . . . . . 7
 | 
| 76 | 37, 40, 73, 50, 75 | syl22anc 1250 | 
. . . . . 6
 | 
| 77 | 72, 76 | eqeltrrd 2274 | 
. . . . 5
 | 
| 78 | prcunqu 7552 | 
. . . . . 6
 | |
| 79 | 57, 78 | sylan 283 | 
. . . . 5
 | 
| 80 | 42, 77, 79 | syl2anc 411 | 
. . . 4
 | 
| 81 | 70, 80 | sylbid 150 | 
. . 3
 | 
| 82 | 61, 81 | jaod 718 | 
. 2
 | 
| 83 | ltsonq 7465 | 
. . . . 5
 | |
| 84 | nqtri3or 7463 | 
. . . . 5
 | |
| 85 | 83, 84 | sotritrieq 4360 | 
. . . 4
 | 
| 86 | 8, 12, 85 | syl2anc 411 | 
. . 3
 | 
| 87 | oveq1 5929 | 
. . . . . . 7
 | |
| 88 | 87 | oveq2d 5938 | 
. . . . . 6
 | 
| 89 | 44, 88 | sylan9eq 2249 | 
. . . . 5
 | 
| 90 | 55 | adantr 276 | 
. . . . 5
 | 
| 91 | 89, 90 | eqeltrrd 2274 | 
. . . 4
 | 
| 92 | 91 | ex 115 | 
. . 3
 | 
| 93 | 86, 92 | sylbird 170 | 
. 2
 | 
| 94 | ltdcnq 7464 | 
. . . . 5
 | |
| 95 | ltdcnq 7464 | 
. . . . . 6
 | |
| 96 | 95 | ancoms 268 | 
. . . . 5
 | 
| 97 | dcor 937 | 
. . . . 5
 | |
| 98 | 94, 96, 97 | sylc 62 | 
. . . 4
 | 
| 99 | 8, 12, 98 | syl2anc 411 | 
. . 3
 | 
| 100 | df-dc 836 | 
. . 3
 | |
| 101 | 99, 100 | sylib 122 | 
. 2
 | 
| 102 | 82, 93, 101 | mpjaod 719 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-iplp 7535 df-imp 7536 | 
| This theorem is referenced by: distrlem5pru 7654 | 
| Copyright terms: Public domain | W3C validator |