ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4pru Unicode version

Theorem distrlem4pru 7547
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4pru  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
Distinct variable groups:    x, y, z, f, A    x, B, y, z, f    x, C, y, z, f

Proof of Theorem distrlem4pru
Dummy variables  w  v  u  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7363 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
21adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
3 simp1 992 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  A  e.  P. )
4 simpll 524 . . . . . . 7  |-  ( ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) )  ->  x  e.  ( 2nd `  A
) )
5 prop 7437 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
6 elprnqu 7444 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
75, 6sylan 281 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
83, 4, 7syl2an 287 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  ->  x  e.  Q. )
9 simprl 526 . . . . . . 7  |-  ( ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) )  ->  f  e.  ( 2nd `  A
) )
10 elprnqu 7444 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
f  e.  Q. )
115, 10sylan 281 . . . . . . 7  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
f  e.  Q. )
123, 9, 11syl2an 287 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
f  e.  Q. )
13 simpl3 997 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  ->  C  e.  P. )
14 simprrr 535 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
z  e.  ( 2nd `  C ) )
15 prop 7437 . . . . . . . 8  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
16 elprnqu 7444 . . . . . . . 8  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
1715, 16sylan 281 . . . . . . 7  |-  ( ( C  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
1813, 14, 17syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
z  e.  Q. )
19 mulcomnqg 7345 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  .Q  v
)  =  ( v  .Q  w ) )
2019adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  .Q  v )  =  ( v  .Q  w ) )
212, 8, 12, 18, 20caovord2d 6022 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  <Q  f  <->  ( x  .Q  z ) 
<Q  ( f  .Q  z
) ) )
22 mulclnq 7338 . . . . . . 7  |-  ( ( x  e.  Q.  /\  z  e.  Q. )  ->  ( x  .Q  z
)  e.  Q. )
238, 18, 22syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  .Q  z
)  e.  Q. )
24 mulclnq 7338 . . . . . . 7  |-  ( ( f  e.  Q.  /\  z  e.  Q. )  ->  ( f  .Q  z
)  e.  Q. )
2512, 18, 24syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  .Q  z
)  e.  Q. )
26 simpl2 996 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  ->  B  e.  P. )
27 simprlr 533 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
y  e.  ( 2nd `  B ) )
28 prop 7437 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
29 elprnqu 7444 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
3028, 29sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
3126, 27, 30syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
y  e.  Q. )
32 mulclnq 7338 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  e.  Q. )
338, 31, 32syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  .Q  y
)  e.  Q. )
34 ltanqg 7362 . . . . . 6  |-  ( ( ( x  .Q  z
)  e.  Q.  /\  ( f  .Q  z
)  e.  Q.  /\  ( x  .Q  y
)  e.  Q. )  ->  ( ( x  .Q  z )  <Q  (
f  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
3523, 25, 33, 34syl3anc 1233 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  .Q  z )  <Q  (
f  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
3621, 35bitrd 187 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  <Q  f  <->  ( ( x  .Q  y
)  +Q  ( x  .Q  z ) ) 
<Q  ( ( x  .Q  y )  +Q  (
f  .Q  z ) ) ) )
37 simpl1 995 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  ->  A  e.  P. )
38 addclpr 7499 . . . . . . . 8  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
39383adant1 1010 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C )  e. 
P. )
4039adantr 274 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( B  +P.  C
)  e.  P. )
41 mulclpr 7534 . . . . . 6  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
4237, 40, 41syl2anc 409 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
43 distrnqg 7349 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
448, 31, 18, 43syl3anc 1233 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z ) ) )
45 simprll 532 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  ->  x  e.  ( 2nd `  A ) )
46 df-iplp 7430 . . . . . . . . . 10  |-  +P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  +Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  +Q  h
) ) } >. )
47 addclnq 7337 . . . . . . . . . 10  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
4846, 47genppreclu 7477 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  ->  ( y  +Q  z )  e.  ( 2nd `  ( B  +P.  C ) ) ) )
4948imp 123 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  +Q  z )  e.  ( 2nd `  ( B  +P.  C ) ) )
5026, 13, 27, 14, 49syl22anc 1234 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( y  +Q  z
)  e.  ( 2nd `  ( B  +P.  C
) ) )
51 df-imp 7431 . . . . . . . . 9  |-  .P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  .Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  .Q  h
) ) } >. )
52 mulclnq 7338 . . . . . . . . 9  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
5351, 52genppreclu 7477 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( x  e.  ( 2nd `  A
)  /\  ( y  +Q  z )  e.  ( 2nd `  ( B  +P.  C ) ) )  ->  ( x  .Q  ( y  +Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
5453imp 123 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  ( y  +Q  z )  e.  ( 2nd `  ( B  +P.  C ) ) ) )  ->  (
x  .Q  ( y  +Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
5537, 40, 45, 50, 54syl22anc 1234 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
5644, 55eqeltrrd 2248 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
57 prop 7437 . . . . . 6  |-  ( ( A  .P.  ( B  +P.  C ) )  e.  P.  ->  <. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P. )
58 prcunqu 7447 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( x  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
5957, 58sylan 281 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( x  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6042, 56, 59syl2anc 409 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( x  .Q  z
) )  <Q  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6136, 60sylbid 149 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  <Q  f  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
622, 12, 8, 31, 20caovord2d 6022 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  <Q  x  <->  ( f  .Q  y ) 
<Q  ( x  .Q  y
) ) )
63 ltanqg 7362 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
6463adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
65 mulclnq 7338 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q. )  ->  ( f  .Q  y
)  e.  Q. )
6612, 31, 65syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  .Q  y
)  e.  Q. )
67 addcomnqg 7343 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  +Q  v
)  =  ( v  +Q  w ) )
6867adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  +Q  v )  =  ( v  +Q  w ) )
6964, 66, 33, 25, 68caovord2d 6022 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( f  .Q  y )  <Q  (
x  .Q  y )  <-> 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
7062, 69bitrd 187 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  <Q  x  <->  ( ( f  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( x  .Q  y )  +Q  (
f  .Q  z ) ) ) )
71 distrnqg 7349 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
f  .Q  ( y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z
) ) )
7212, 31, 18, 71syl3anc 1233 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z ) ) )
73 simprrl 534 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
f  e.  ( 2nd `  A ) )
7451, 52genppreclu 7477 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( f  e.  ( 2nd `  A
)  /\  ( y  +Q  z )  e.  ( 2nd `  ( B  +P.  C ) ) )  ->  ( f  .Q  ( y  +Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7574imp 123 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( f  e.  ( 2nd `  A )  /\  ( y  +Q  z )  e.  ( 2nd `  ( B  +P.  C ) ) ) )  ->  (
f  .Q  ( y  +Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
7637, 40, 73, 50, 75syl22anc 1234 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
7772, 76eqeltrrd 2248 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
78 prcunqu 7447 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( f  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( f  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7957, 78sylan 281 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( f  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8042, 77, 79syl2anc 409 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( ( f  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8170, 80sylbid 149 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( f  <Q  x  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8261, 81jaod 712 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
83 ltsonq 7360 . . . . 5  |-  <Q  Or  Q.
84 nqtri3or 7358 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  \/  x  =  f  \/  f  <Q  x ) )
8583, 84sotritrieq 4310 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
868, 12, 85syl2anc 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
87 oveq1 5860 . . . . . . 7  |-  ( x  =  f  ->  (
x  .Q  z )  =  ( f  .Q  z ) )
8887oveq2d 5869 . . . . . 6  |-  ( x  =  f  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) ) )
8944, 88sylan9eq 2223 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
9055adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
9189, 90eqeltrrd 2248 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  /\  x  =  f )  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
9291ex 114 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( x  =  f  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
9386, 92sylbird 169 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( -.  ( x 
<Q  f  \/  f  <Q  x )  ->  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
94 ltdcnq 7359 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  x 
<Q  f )
95 ltdcnq 7359 . . . . . 6  |-  ( ( f  e.  Q.  /\  x  e.  Q. )  -> DECID  f 
<Q  x )
9695ancoms 266 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  f 
<Q  x )
97 dcor 930 . . . . 5  |-  (DECID  x  <Q  f  ->  (DECID  f  <Q  x  -> DECID  ( x 
<Q  f  \/  f  <Q  x ) ) )
9894, 96, 97sylc 62 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  ( x  <Q  f  \/  f  <Q  x ) )
998, 12, 98syl2anc 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> DECID  (
x  <Q  f  \/  f  <Q  x ) )
100 df-dc 830 . . 3  |-  (DECID  ( x 
<Q  f  \/  f  <Q  x )  <->  ( (
x  <Q  f  \/  f  <Q  x )  \/  -.  ( x  <Q  f  \/  f  <Q  x )
) )
10199, 100sylib 121 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  \/  -.  (
x  <Q  f  \/  f  <Q  x ) ) )
10282, 93, 101mpjaod 713 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    +Q cplq 7244    .Q cmq 7245    <Q cltq 7247   P.cnp 7253    +P. cpp 7255    .P. cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-imp 7431
This theorem is referenced by:  distrlem5pru  7549
  Copyright terms: Public domain W3C validator