| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrlem4pru | Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrlem4pru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmnqg 7588 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | simp1 1021 |
. . . . . . 7
| |
| 4 | simpll 527 |
. . . . . . 7
| |
| 5 | prop 7662 |
. . . . . . . 8
| |
| 6 | elprnqu 7669 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylan 283 |
. . . . . . 7
|
| 8 | 3, 4, 7 | syl2an 289 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . . 7
| |
| 10 | elprnqu 7669 |
. . . . . . . 8
| |
| 11 | 5, 10 | sylan 283 |
. . . . . . 7
|
| 12 | 3, 9, 11 | syl2an 289 |
. . . . . 6
|
| 13 | simpl3 1026 |
. . . . . . 7
| |
| 14 | simprrr 540 |
. . . . . . 7
| |
| 15 | prop 7662 |
. . . . . . . 8
| |
| 16 | elprnqu 7669 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylan 283 |
. . . . . . 7
|
| 18 | 13, 14, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | mulcomnqg 7570 |
. . . . . . 7
| |
| 20 | 19 | adantl 277 |
. . . . . 6
|
| 21 | 2, 8, 12, 18, 20 | caovord2d 6175 |
. . . . 5
|
| 22 | mulclnq 7563 |
. . . . . . 7
| |
| 23 | 8, 18, 22 | syl2anc 411 |
. . . . . 6
|
| 24 | mulclnq 7563 |
. . . . . . 7
| |
| 25 | 12, 18, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | simpl2 1025 |
. . . . . . . 8
| |
| 27 | simprlr 538 |
. . . . . . . 8
| |
| 28 | prop 7662 |
. . . . . . . . 9
| |
| 29 | elprnqu 7669 |
. . . . . . . . 9
| |
| 30 | 28, 29 | sylan 283 |
. . . . . . . 8
|
| 31 | 26, 27, 30 | syl2anc 411 |
. . . . . . 7
|
| 32 | mulclnq 7563 |
. . . . . . 7
| |
| 33 | 8, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | ltanqg 7587 |
. . . . . 6
| |
| 35 | 23, 25, 33, 34 | syl3anc 1271 |
. . . . 5
|
| 36 | 21, 35 | bitrd 188 |
. . . 4
|
| 37 | simpl1 1024 |
. . . . . 6
| |
| 38 | addclpr 7724 |
. . . . . . . 8
| |
| 39 | 38 | 3adant1 1039 |
. . . . . . 7
|
| 40 | 39 | adantr 276 |
. . . . . 6
|
| 41 | mulclpr 7759 |
. . . . . 6
| |
| 42 | 37, 40, 41 | syl2anc 411 |
. . . . 5
|
| 43 | distrnqg 7574 |
. . . . . . 7
| |
| 44 | 8, 31, 18, 43 | syl3anc 1271 |
. . . . . 6
|
| 45 | simprll 537 |
. . . . . . 7
| |
| 46 | df-iplp 7655 |
. . . . . . . . . 10
| |
| 47 | addclnq 7562 |
. . . . . . . . . 10
| |
| 48 | 46, 47 | genppreclu 7702 |
. . . . . . . . 9
|
| 49 | 48 | imp 124 |
. . . . . . . 8
|
| 50 | 26, 13, 27, 14, 49 | syl22anc 1272 |
. . . . . . 7
|
| 51 | df-imp 7656 |
. . . . . . . . 9
| |
| 52 | mulclnq 7563 |
. . . . . . . . 9
| |
| 53 | 51, 52 | genppreclu 7702 |
. . . . . . . 8
|
| 54 | 53 | imp 124 |
. . . . . . 7
|
| 55 | 37, 40, 45, 50, 54 | syl22anc 1272 |
. . . . . 6
|
| 56 | 44, 55 | eqeltrrd 2307 |
. . . . 5
|
| 57 | prop 7662 |
. . . . . 6
| |
| 58 | prcunqu 7672 |
. . . . . 6
| |
| 59 | 57, 58 | sylan 283 |
. . . . 5
|
| 60 | 42, 56, 59 | syl2anc 411 |
. . . 4
|
| 61 | 36, 60 | sylbid 150 |
. . 3
|
| 62 | 2, 12, 8, 31, 20 | caovord2d 6175 |
. . . . 5
|
| 63 | ltanqg 7587 |
. . . . . . 7
| |
| 64 | 63 | adantl 277 |
. . . . . 6
|
| 65 | mulclnq 7563 |
. . . . . . 7
| |
| 66 | 12, 31, 65 | syl2anc 411 |
. . . . . 6
|
| 67 | addcomnqg 7568 |
. . . . . . 7
| |
| 68 | 67 | adantl 277 |
. . . . . 6
|
| 69 | 64, 66, 33, 25, 68 | caovord2d 6175 |
. . . . 5
|
| 70 | 62, 69 | bitrd 188 |
. . . 4
|
| 71 | distrnqg 7574 |
. . . . . . 7
| |
| 72 | 12, 31, 18, 71 | syl3anc 1271 |
. . . . . 6
|
| 73 | simprrl 539 |
. . . . . . 7
| |
| 74 | 51, 52 | genppreclu 7702 |
. . . . . . . 8
|
| 75 | 74 | imp 124 |
. . . . . . 7
|
| 76 | 37, 40, 73, 50, 75 | syl22anc 1272 |
. . . . . 6
|
| 77 | 72, 76 | eqeltrrd 2307 |
. . . . 5
|
| 78 | prcunqu 7672 |
. . . . . 6
| |
| 79 | 57, 78 | sylan 283 |
. . . . 5
|
| 80 | 42, 77, 79 | syl2anc 411 |
. . . 4
|
| 81 | 70, 80 | sylbid 150 |
. . 3
|
| 82 | 61, 81 | jaod 722 |
. 2
|
| 83 | ltsonq 7585 |
. . . . 5
| |
| 84 | nqtri3or 7583 |
. . . . 5
| |
| 85 | 83, 84 | sotritrieq 4416 |
. . . 4
|
| 86 | 8, 12, 85 | syl2anc 411 |
. . 3
|
| 87 | oveq1 6008 |
. . . . . . 7
| |
| 88 | 87 | oveq2d 6017 |
. . . . . 6
|
| 89 | 44, 88 | sylan9eq 2282 |
. . . . 5
|
| 90 | 55 | adantr 276 |
. . . . 5
|
| 91 | 89, 90 | eqeltrrd 2307 |
. . . 4
|
| 92 | 91 | ex 115 |
. . 3
|
| 93 | 86, 92 | sylbird 170 |
. 2
|
| 94 | ltdcnq 7584 |
. . . . 5
| |
| 95 | ltdcnq 7584 |
. . . . . 6
| |
| 96 | 95 | ancoms 268 |
. . . . 5
|
| 97 | dcor 941 |
. . . . 5
| |
| 98 | 94, 96, 97 | sylc 62 |
. . . 4
|
| 99 | 8, 12, 98 | syl2anc 411 |
. . 3
|
| 100 | df-dc 840 |
. . 3
| |
| 101 | 99, 100 | sylib 122 |
. 2
|
| 102 | 82, 93, 101 | mpjaod 723 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-imp 7656 |
| This theorem is referenced by: distrlem5pru 7774 |
| Copyright terms: Public domain | W3C validator |