Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distrlem4pru | Unicode version |
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
Ref | Expression |
---|---|
distrlem4pru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmnqg 7342 | . . . . . . 7 | |
2 | 1 | adantl 275 | . . . . . 6 |
3 | simp1 987 | . . . . . . 7 | |
4 | simpll 519 | . . . . . . 7 | |
5 | prop 7416 | . . . . . . . 8 | |
6 | elprnqu 7423 | . . . . . . . 8 | |
7 | 5, 6 | sylan 281 | . . . . . . 7 |
8 | 3, 4, 7 | syl2an 287 | . . . . . 6 |
9 | simprl 521 | . . . . . . 7 | |
10 | elprnqu 7423 | . . . . . . . 8 | |
11 | 5, 10 | sylan 281 | . . . . . . 7 |
12 | 3, 9, 11 | syl2an 287 | . . . . . 6 |
13 | simpl3 992 | . . . . . . 7 | |
14 | simprrr 530 | . . . . . . 7 | |
15 | prop 7416 | . . . . . . . 8 | |
16 | elprnqu 7423 | . . . . . . . 8 | |
17 | 15, 16 | sylan 281 | . . . . . . 7 |
18 | 13, 14, 17 | syl2anc 409 | . . . . . 6 |
19 | mulcomnqg 7324 | . . . . . . 7 | |
20 | 19 | adantl 275 | . . . . . 6 |
21 | 2, 8, 12, 18, 20 | caovord2d 6011 | . . . . 5 |
22 | mulclnq 7317 | . . . . . . 7 | |
23 | 8, 18, 22 | syl2anc 409 | . . . . . 6 |
24 | mulclnq 7317 | . . . . . . 7 | |
25 | 12, 18, 24 | syl2anc 409 | . . . . . 6 |
26 | simpl2 991 | . . . . . . . 8 | |
27 | simprlr 528 | . . . . . . . 8 | |
28 | prop 7416 | . . . . . . . . 9 | |
29 | elprnqu 7423 | . . . . . . . . 9 | |
30 | 28, 29 | sylan 281 | . . . . . . . 8 |
31 | 26, 27, 30 | syl2anc 409 | . . . . . . 7 |
32 | mulclnq 7317 | . . . . . . 7 | |
33 | 8, 31, 32 | syl2anc 409 | . . . . . 6 |
34 | ltanqg 7341 | . . . . . 6 | |
35 | 23, 25, 33, 34 | syl3anc 1228 | . . . . 5 |
36 | 21, 35 | bitrd 187 | . . . 4 |
37 | simpl1 990 | . . . . . 6 | |
38 | addclpr 7478 | . . . . . . . 8 | |
39 | 38 | 3adant1 1005 | . . . . . . 7 |
40 | 39 | adantr 274 | . . . . . 6 |
41 | mulclpr 7513 | . . . . . 6 | |
42 | 37, 40, 41 | syl2anc 409 | . . . . 5 |
43 | distrnqg 7328 | . . . . . . 7 | |
44 | 8, 31, 18, 43 | syl3anc 1228 | . . . . . 6 |
45 | simprll 527 | . . . . . . 7 | |
46 | df-iplp 7409 | . . . . . . . . . 10 | |
47 | addclnq 7316 | . . . . . . . . . 10 | |
48 | 46, 47 | genppreclu 7456 | . . . . . . . . 9 |
49 | 48 | imp 123 | . . . . . . . 8 |
50 | 26, 13, 27, 14, 49 | syl22anc 1229 | . . . . . . 7 |
51 | df-imp 7410 | . . . . . . . . 9 | |
52 | mulclnq 7317 | . . . . . . . . 9 | |
53 | 51, 52 | genppreclu 7456 | . . . . . . . 8 |
54 | 53 | imp 123 | . . . . . . 7 |
55 | 37, 40, 45, 50, 54 | syl22anc 1229 | . . . . . 6 |
56 | 44, 55 | eqeltrrd 2244 | . . . . 5 |
57 | prop 7416 | . . . . . 6 | |
58 | prcunqu 7426 | . . . . . 6 | |
59 | 57, 58 | sylan 281 | . . . . 5 |
60 | 42, 56, 59 | syl2anc 409 | . . . 4 |
61 | 36, 60 | sylbid 149 | . . 3 |
62 | 2, 12, 8, 31, 20 | caovord2d 6011 | . . . . 5 |
63 | ltanqg 7341 | . . . . . . 7 | |
64 | 63 | adantl 275 | . . . . . 6 |
65 | mulclnq 7317 | . . . . . . 7 | |
66 | 12, 31, 65 | syl2anc 409 | . . . . . 6 |
67 | addcomnqg 7322 | . . . . . . 7 | |
68 | 67 | adantl 275 | . . . . . 6 |
69 | 64, 66, 33, 25, 68 | caovord2d 6011 | . . . . 5 |
70 | 62, 69 | bitrd 187 | . . . 4 |
71 | distrnqg 7328 | . . . . . . 7 | |
72 | 12, 31, 18, 71 | syl3anc 1228 | . . . . . 6 |
73 | simprrl 529 | . . . . . . 7 | |
74 | 51, 52 | genppreclu 7456 | . . . . . . . 8 |
75 | 74 | imp 123 | . . . . . . 7 |
76 | 37, 40, 73, 50, 75 | syl22anc 1229 | . . . . . 6 |
77 | 72, 76 | eqeltrrd 2244 | . . . . 5 |
78 | prcunqu 7426 | . . . . . 6 | |
79 | 57, 78 | sylan 281 | . . . . 5 |
80 | 42, 77, 79 | syl2anc 409 | . . . 4 |
81 | 70, 80 | sylbid 149 | . . 3 |
82 | 61, 81 | jaod 707 | . 2 |
83 | ltsonq 7339 | . . . . 5 | |
84 | nqtri3or 7337 | . . . . 5 | |
85 | 83, 84 | sotritrieq 4303 | . . . 4 |
86 | 8, 12, 85 | syl2anc 409 | . . 3 |
87 | oveq1 5849 | . . . . . . 7 | |
88 | 87 | oveq2d 5858 | . . . . . 6 |
89 | 44, 88 | sylan9eq 2219 | . . . . 5 |
90 | 55 | adantr 274 | . . . . 5 |
91 | 89, 90 | eqeltrrd 2244 | . . . 4 |
92 | 91 | ex 114 | . . 3 |
93 | 86, 92 | sylbird 169 | . 2 |
94 | ltdcnq 7338 | . . . . 5 DECID | |
95 | ltdcnq 7338 | . . . . . 6 DECID | |
96 | 95 | ancoms 266 | . . . . 5 DECID |
97 | dcor 925 | . . . . 5 DECID DECID DECID | |
98 | 94, 96, 97 | sylc 62 | . . . 4 DECID |
99 | 8, 12, 98 | syl2anc 409 | . . 3 DECID |
100 | df-dc 825 | . . 3 DECID | |
101 | 99, 100 | sylib 121 | . 2 |
102 | 82, 93, 101 | mpjaod 708 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 cfv 5188 (class class class)co 5842 c1st 6106 c2nd 6107 cnq 7221 cplq 7223 cmq 7224 cltq 7226 cnp 7232 cpp 7234 cmp 7235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-iplp 7409 df-imp 7410 |
This theorem is referenced by: distrlem5pru 7528 |
Copyright terms: Public domain | W3C validator |