| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemrl | Unicode version | ||
| Description: Lemma for mulnqpr 7732. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqprlu 7702 |
. . . . . 6
| |
| 2 | nqprlu 7702 |
. . . . . 6
| |
| 3 | df-imp 7624 |
. . . . . . 7
| |
| 4 | mulclnq 7531 |
. . . . . . 7
| |
| 5 | 3, 4 | genpelvl 7667 |
. . . . . 6
|
| 6 | 1, 2, 5 | syl2an 289 |
. . . . 5
|
| 7 | 6 | biimpa 296 |
. . . 4
|
| 8 | vex 2782 |
. . . . . . . . . . . . 13
| |
| 9 | breq1 4065 |
. . . . . . . . . . . . 13
| |
| 10 | ltnqex 7704 |
. . . . . . . . . . . . . 14
| |
| 11 | gtnqex 7705 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | op1st 6262 |
. . . . . . . . . . . . 13
|
| 13 | 8, 9, 12 | elab2 2931 |
. . . . . . . . . . . 12
|
| 14 | 13 | biimpi 120 |
. . . . . . . . . . 11
|
| 15 | 14 | ad2antrl 490 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | vex 2782 |
. . . . . . . . . . . . 13
| |
| 18 | breq1 4065 |
. . . . . . . . . . . . 13
| |
| 19 | ltnqex 7704 |
. . . . . . . . . . . . . 14
| |
| 20 | gtnqex 7705 |
. . . . . . . . . . . . . 14
| |
| 21 | 19, 20 | op1st 6262 |
. . . . . . . . . . . . 13
|
| 22 | 17, 18, 21 | elab2 2931 |
. . . . . . . . . . . 12
|
| 23 | 22 | biimpi 120 |
. . . . . . . . . . 11
|
| 24 | 23 | ad2antll 491 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 276 |
. . . . . . . . 9
|
| 26 | ltrelnq 7520 |
. . . . . . . . . . . 12
| |
| 27 | 26 | brel 4748 |
. . . . . . . . . . 11
|
| 28 | 16, 27 | syl 14 |
. . . . . . . . . 10
|
| 29 | 26 | brel 4748 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | syl 14 |
. . . . . . . . . 10
|
| 31 | lt2mulnq 7560 |
. . . . . . . . . 10
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . 9
|
| 33 | 16, 25, 32 | mp2and 433 |
. . . . . . . 8
|
| 34 | breq1 4065 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | 33, 35 | mpbird 167 |
. . . . . . 7
|
| 37 | vex 2782 |
. . . . . . . 8
| |
| 38 | breq1 4065 |
. . . . . . . 8
| |
| 39 | ltnqex 7704 |
. . . . . . . . 9
| |
| 40 | gtnqex 7705 |
. . . . . . . . 9
| |
| 41 | 39, 40 | op1st 6262 |
. . . . . . . 8
|
| 42 | 37, 38, 41 | elab2 2931 |
. . . . . . 7
|
| 43 | 36, 42 | sylibr 134 |
. . . . . 6
|
| 44 | 43 | ex 115 |
. . . . 5
|
| 45 | 44 | rexlimdvva 2636 |
. . . 4
|
| 46 | 7, 45 | mpd 13 |
. . 3
|
| 47 | 46 | ex 115 |
. 2
|
| 48 | 47 | ssrdv 3210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-inp 7621 df-imp 7624 |
| This theorem is referenced by: mulnqprlemfu 7731 mulnqpr 7732 |
| Copyright terms: Public domain | W3C validator |