| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemrl | Unicode version | ||
| Description: Lemma for mulnqpr 7697. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqprlu 7667 |
. . . . . 6
| |
| 2 | nqprlu 7667 |
. . . . . 6
| |
| 3 | df-imp 7589 |
. . . . . . 7
| |
| 4 | mulclnq 7496 |
. . . . . . 7
| |
| 5 | 3, 4 | genpelvl 7632 |
. . . . . 6
|
| 6 | 1, 2, 5 | syl2an 289 |
. . . . 5
|
| 7 | 6 | biimpa 296 |
. . . 4
|
| 8 | vex 2776 |
. . . . . . . . . . . . 13
| |
| 9 | breq1 4050 |
. . . . . . . . . . . . 13
| |
| 10 | ltnqex 7669 |
. . . . . . . . . . . . . 14
| |
| 11 | gtnqex 7670 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | op1st 6239 |
. . . . . . . . . . . . 13
|
| 13 | 8, 9, 12 | elab2 2922 |
. . . . . . . . . . . 12
|
| 14 | 13 | biimpi 120 |
. . . . . . . . . . 11
|
| 15 | 14 | ad2antrl 490 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | vex 2776 |
. . . . . . . . . . . . 13
| |
| 18 | breq1 4050 |
. . . . . . . . . . . . 13
| |
| 19 | ltnqex 7669 |
. . . . . . . . . . . . . 14
| |
| 20 | gtnqex 7670 |
. . . . . . . . . . . . . 14
| |
| 21 | 19, 20 | op1st 6239 |
. . . . . . . . . . . . 13
|
| 22 | 17, 18, 21 | elab2 2922 |
. . . . . . . . . . . 12
|
| 23 | 22 | biimpi 120 |
. . . . . . . . . . 11
|
| 24 | 23 | ad2antll 491 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 276 |
. . . . . . . . 9
|
| 26 | ltrelnq 7485 |
. . . . . . . . . . . 12
| |
| 27 | 26 | brel 4731 |
. . . . . . . . . . 11
|
| 28 | 16, 27 | syl 14 |
. . . . . . . . . 10
|
| 29 | 26 | brel 4731 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | syl 14 |
. . . . . . . . . 10
|
| 31 | lt2mulnq 7525 |
. . . . . . . . . 10
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . 9
|
| 33 | 16, 25, 32 | mp2and 433 |
. . . . . . . 8
|
| 34 | breq1 4050 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | 33, 35 | mpbird 167 |
. . . . . . 7
|
| 37 | vex 2776 |
. . . . . . . 8
| |
| 38 | breq1 4050 |
. . . . . . . 8
| |
| 39 | ltnqex 7669 |
. . . . . . . . 9
| |
| 40 | gtnqex 7670 |
. . . . . . . . 9
| |
| 41 | 39, 40 | op1st 6239 |
. . . . . . . 8
|
| 42 | 37, 38, 41 | elab2 2922 |
. . . . . . 7
|
| 43 | 36, 42 | sylibr 134 |
. . . . . 6
|
| 44 | 43 | ex 115 |
. . . . 5
|
| 45 | 44 | rexlimdvva 2632 |
. . . 4
|
| 46 | 7, 45 | mpd 13 |
. . 3
|
| 47 | 46 | ex 115 |
. 2
|
| 48 | 47 | ssrdv 3200 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-inp 7586 df-imp 7589 |
| This theorem is referenced by: mulnqprlemfu 7696 mulnqpr 7697 |
| Copyright terms: Public domain | W3C validator |