Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff1o4 | Unicode version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 5437 | . 2 | |
2 | 3anass 972 | . 2 | |
3 | df-rn 4615 | . . . . . 6 | |
4 | 3 | eqeq1i 2173 | . . . . 5 |
5 | 4 | anbi2i 453 | . . . 4 |
6 | df-fn 5191 | . . . 4 | |
7 | 5, 6 | bitr4i 186 | . . 3 |
8 | 7 | anbi2i 453 | . 2 |
9 | 1, 2, 8 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 968 wceq 1343 ccnv 4603 cdm 4604 crn 4605 wfun 5182 wfn 5183 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-rn 4615 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: f1ocnv 5445 f1oun 5452 f1o00 5467 f1oi 5470 f1osn 5472 f1ompt 5636 f1ofveu 5830 f1ocnvd 6040 f1od2 6203 mapsnf1o2 6662 sbthlemi9 6930 hmeof1o2 12948 |
Copyright terms: Public domain | W3C validator |