ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o4 Unicode version

Theorem dff1o4 5440
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 5437 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
2 3anass 972 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) ) )
3 df-rn 4615 . . . . . 6  |-  ran  F  =  dom  `' F
43eqeq1i 2173 . . . . 5  |-  ( ran 
F  =  B  <->  dom  `' F  =  B )
54anbi2i 453 . . . 4  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <-> 
( Fun  `' F  /\  dom  `' F  =  B ) )
6 df-fn 5191 . . . 4  |-  ( `' F  Fn  B  <->  ( Fun  `' F  /\  dom  `' F  =  B )
)
75, 6bitr4i 186 . . 3  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <->  `' F  Fn  B
)
87anbi2i 453 . 2  |-  ( ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
91, 2, 83bitri 205 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   `'ccnv 4603   dom cdm 4604   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-rn 4615  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1ocnv  5445  f1oun  5452  f1o00  5467  f1oi  5470  f1osn  5472  f1ompt  5636  f1ofveu  5830  f1ocnvd  6040  f1od2  6203  mapsnf1o2  6662  sbthlemi9  6930  hmeof1o2  12948
  Copyright terms: Public domain W3C validator