Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff1o4 | Unicode version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 5447 | . 2 | |
2 | 3anass 977 | . 2 | |
3 | df-rn 4622 | . . . . . 6 | |
4 | 3 | eqeq1i 2178 | . . . . 5 |
5 | 4 | anbi2i 454 | . . . 4 |
6 | df-fn 5201 | . . . 4 | |
7 | 5, 6 | bitr4i 186 | . . 3 |
8 | 7 | anbi2i 454 | . 2 |
9 | 1, 2, 8 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wceq 1348 ccnv 4610 cdm 4611 crn 4612 wfun 5192 wfn 5193 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-rn 4622 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1ocnv 5455 f1oun 5462 f1o00 5477 f1oi 5480 f1osn 5482 f1ompt 5647 f1ofveu 5841 f1ocnvd 6051 f1od2 6214 mapsnf1o2 6674 sbthlemi9 6942 mhmf1o 12693 grpinvf1o 12769 hmeof1o2 13102 |
Copyright terms: Public domain | W3C validator |