ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o4 Unicode version

Theorem dff1o4 5552
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 5549 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
2 3anass 985 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) ) )
3 df-rn 4704 . . . . . 6  |-  ran  F  =  dom  `' F
43eqeq1i 2215 . . . . 5  |-  ( ran 
F  =  B  <->  dom  `' F  =  B )
54anbi2i 457 . . . 4  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <-> 
( Fun  `' F  /\  dom  `' F  =  B ) )
6 df-fn 5293 . . . 4  |-  ( `' F  Fn  B  <->  ( Fun  `' F  /\  dom  `' F  =  B )
)
75, 6bitr4i 187 . . 3  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <->  `' F  Fn  B
)
87anbi2i 457 . 2  |-  ( ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
91, 2, 83bitri 206 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   `'ccnv 4692   dom cdm 4693   ran crn 4694   Fun wfun 5284    Fn wfn 5285   -1-1-onto->wf1o 5289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-rn 4704  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  f1ocnv  5557  f1oun  5564  f1o00  5580  f1oi  5583  f1osn  5585  f1ompt  5754  f1ofveu  5955  f1ocnvd  6171  f1od2  6344  mapsnf1o2  6806  sbthlemi9  7093  xnn0nnen  10619  nninfctlemfo  12476  mhmf1o  13417  grpinvf1o  13517  ghmf1o  13726  rhmf1o  14045  hmeof1o2  14895
  Copyright terms: Public domain W3C validator