| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff1o4 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o2 5510 |
. 2
| |
| 2 | 3anass 984 |
. 2
| |
| 3 | df-rn 4675 |
. . . . . 6
| |
| 4 | 3 | eqeq1i 2204 |
. . . . 5
|
| 5 | 4 | anbi2i 457 |
. . . 4
|
| 6 | df-fn 5262 |
. . . 4
| |
| 7 | 5, 6 | bitr4i 187 |
. . 3
|
| 8 | 7 | anbi2i 457 |
. 2
|
| 9 | 1, 2, 8 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-rn 4675 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1ocnv 5518 f1oun 5525 f1o00 5540 f1oi 5543 f1osn 5545 f1ompt 5714 f1ofveu 5911 f1ocnvd 6127 f1od2 6295 mapsnf1o2 6757 sbthlemi9 7033 xnn0nnen 10532 nninfctlemfo 12218 mhmf1o 13128 grpinvf1o 13228 ghmf1o 13431 rhmf1o 13750 hmeof1o2 14570 |
| Copyright terms: Public domain | W3C validator |