ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o4 Unicode version

Theorem dff1o4 5450
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 5447 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
2 3anass 977 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) ) )
3 df-rn 4622 . . . . . 6  |-  ran  F  =  dom  `' F
43eqeq1i 2178 . . . . 5  |-  ( ran 
F  =  B  <->  dom  `' F  =  B )
54anbi2i 454 . . . 4  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <-> 
( Fun  `' F  /\  dom  `' F  =  B ) )
6 df-fn 5201 . . . 4  |-  ( `' F  Fn  B  <->  ( Fun  `' F  /\  dom  `' F  =  B )
)
75, 6bitr4i 186 . . 3  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <->  `' F  Fn  B
)
87anbi2i 454 . 2  |-  ( ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
91, 2, 83bitri 205 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   `'ccnv 4610   dom cdm 4611   ran crn 4612   Fun wfun 5192    Fn wfn 5193   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-rn 4622  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  f1ocnv  5455  f1oun  5462  f1o00  5477  f1oi  5480  f1osn  5482  f1ompt  5647  f1ofveu  5841  f1ocnvd  6051  f1od2  6214  mapsnf1o2  6674  sbthlemi9  6942  mhmf1o  12693  grpinvf1o  12769  hmeof1o2  13102
  Copyright terms: Public domain W3C validator