Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff1o4 | Unicode version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 5416 | . 2 | |
2 | 3anass 967 | . 2 | |
3 | df-rn 4594 | . . . . . 6 | |
4 | 3 | eqeq1i 2165 | . . . . 5 |
5 | 4 | anbi2i 453 | . . . 4 |
6 | df-fn 5170 | . . . 4 | |
7 | 5, 6 | bitr4i 186 | . . 3 |
8 | 7 | anbi2i 453 | . 2 |
9 | 1, 2, 8 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 963 wceq 1335 ccnv 4582 cdm 4583 crn 4584 wfun 5161 wfn 5162 wf1o 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 df-rn 4594 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 |
This theorem is referenced by: f1ocnv 5424 f1oun 5431 f1o00 5446 f1oi 5449 f1osn 5451 f1ompt 5615 f1ofveu 5806 f1ocnvd 6016 f1od2 6176 mapsnf1o2 6634 sbthlemi9 6902 hmeof1o2 12668 |
Copyright terms: Public domain | W3C validator |