ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o4 Unicode version

Theorem dff1o4 5419
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 5416 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
2 3anass 967 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) ) )
3 df-rn 4594 . . . . . 6  |-  ran  F  =  dom  `' F
43eqeq1i 2165 . . . . 5  |-  ( ran 
F  =  B  <->  dom  `' F  =  B )
54anbi2i 453 . . . 4  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <-> 
( Fun  `' F  /\  dom  `' F  =  B ) )
6 df-fn 5170 . . . 4  |-  ( `' F  Fn  B  <->  ( Fun  `' F  /\  dom  `' F  =  B )
)
75, 6bitr4i 186 . . 3  |-  ( ( Fun  `' F  /\  ran  F  =  B )  <->  `' F  Fn  B
)
87anbi2i 453 . 2  |-  ( ( F  Fn  A  /\  ( Fun  `' F  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
91, 2, 83bitri 205 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335   `'ccnv 4582   dom cdm 4583   ran crn 4584   Fun wfun 5161    Fn wfn 5162   -1-1-onto->wf1o 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-in 3108  df-ss 3115  df-rn 4594  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174
This theorem is referenced by:  f1ocnv  5424  f1oun  5431  f1o00  5446  f1oi  5449  f1osn  5451  f1ompt  5615  f1ofveu  5806  f1ocnvd  6016  f1od2  6176  mapsnf1o2  6634  sbthlemi9  6902  hmeof1o2  12668
  Copyright terms: Public domain W3C validator