ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqpr Unicode version

Theorem opeqpr 4286
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqpr.1  |-  A  e. 
_V
opeqpr.2  |-  B  e. 
_V
opeqpr.3  |-  C  e. 
_V
opeqpr.4  |-  D  e. 
_V
Assertion
Ref Expression
opeqpr  |-  ( <. A ,  B >.  =  { C ,  D } 
<->  ( ( C  =  { A }  /\  D  =  { A ,  B } )  \/  ( C  =  { A ,  B }  /\  D  =  { A } ) ) )

Proof of Theorem opeqpr
StepHypRef Expression
1 eqcom 2198 . 2  |-  ( <. A ,  B >.  =  { C ,  D } 
<->  { C ,  D }  =  <. A ,  B >. )
2 opeqpr.1 . . . 4  |-  A  e. 
_V
3 opeqpr.2 . . . 4  |-  B  e. 
_V
42, 3dfop 3807 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
54eqeq2i 2207 . 2  |-  ( { C ,  D }  =  <. A ,  B >.  <->  { C ,  D }  =  { { A } ,  { A ,  B } } )
6 opeqpr.3 . . 3  |-  C  e. 
_V
7 opeqpr.4 . . 3  |-  D  e. 
_V
82snex 4218 . . 3  |-  { A }  e.  _V
9 prexg 4244 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
102, 3, 9mp2an 426 . . 3  |-  { A ,  B }  e.  _V
116, 7, 8, 10preq12b 3800 . 2  |-  ( { C ,  D }  =  { { A } ,  { A ,  B } }  <->  ( ( C  =  { A }  /\  D  =  { A ,  B }
)  \/  ( C  =  { A ,  B }  /\  D  =  { A } ) ) )
121, 5, 113bitri 206 1  |-  ( <. A ,  B >.  =  { C ,  D } 
<->  ( ( C  =  { A }  /\  D  =  { A ,  B } )  \/  ( C  =  { A ,  B }  /\  D  =  { A } ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   {cpr 3623   <.cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  relop  4816
  Copyright terms: Public domain W3C validator