ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv2 Unicode version

Theorem cnvcnv2 5120
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2  |-  `' `' A  =  ( A  |` 
_V )

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 5119 . 2  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )
2 df-res 4672 . 2  |-  ( A  |`  _V )  =  ( A  i^i  ( _V 
X.  _V ) )
31, 2eqtr4i 2217 1  |-  `' `' A  =  ( A  |` 
_V )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2760    i^i cin 3153    X. cxp 4658   `'ccnv 4659    |` cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-res 4672
This theorem is referenced by:  dfrel3  5124  rnresv  5126  rescnvcnv  5129  cocnvcnv1  5177  cocnvcnv2  5178  strslfv2d  12664
  Copyright terms: Public domain W3C validator