ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovi Unicode version

Theorem f1ovi 5539
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
Assertion
Ref Expression
f1ovi  |-  _I  : _V
-1-1-onto-> _V

Proof of Theorem f1ovi
StepHypRef Expression
1 f1oi 5538 . 2  |-  (  _I  |`  _V ) : _V -1-1-onto-> _V
2 reli 4791 . . . 4  |-  Rel  _I
3 dfrel3 5123 . . . 4  |-  ( Rel 
_I 
<->  (  _I  |`  _V )  =  _I  )
42, 3mpbi 145 . . 3  |-  (  _I  |`  _V )  =  _I
5 f1oeq1 5488 . . 3  |-  ( (  _I  |`  _V )  =  _I  ->  ( (  _I  |`  _V ) : _V -1-1-onto-> _V  <->  _I  : _V -1-1-onto-> _V ) )
64, 5ax-mp 5 . 2  |-  ( (  _I  |`  _V ) : _V -1-1-onto-> _V  <->  _I  : _V -1-1-onto-> _V )
71, 6mpbi 145 1  |-  _I  : _V
-1-1-onto-> _V
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   _Vcvv 2760    _I cid 4319    |` cres 4661   Rel wrel 4664   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  residfi  6999
  Copyright terms: Public domain W3C validator