ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 Unicode version

Theorem sbthlemi3 6960
Description: Lemma for isbth 6968. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi3  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7  |-  A  e. 
_V
2 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem2 6959 . . . . . 6  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
41, 2sbthlem1 6958 . . . . . 6  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
53, 4jctil 312 . . . . 5  |-  ( ran  g  C_  A  ->  ( U. D  C_  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) )  /\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  U. D ) )
6 eqss 3172 . . . . 5  |-  ( U. D  =  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  <->  ( U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  /\  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  U. D ) )
75, 6sylibr 134 . . . 4  |-  ( ran  g  C_  A  ->  U. D  =  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )
87difeq2d 3255 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( A 
\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )
98adantl 277 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  =  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
10 imassrn 4983 . . . . 5  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
11 sstr2 3164 . . . . 5  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f " U. D ) ) ) 
C_  A ) )
1210, 11ax-mp 5 . . . 4  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A )
13 exmidexmid 4198 . . . . . . 7  |-  (EXMID  -> DECID  y  e.  (
g " ( B 
\  ( f " U. D ) ) ) )
14 dcstab 844 . . . . . . 7  |-  (DECID  y  e.  ( g " ( B  \  ( f " U. D ) ) )  -> STAB  y  e.  ( g
" ( B  \ 
( f " U. D ) ) ) )
1513, 14syl 14 . . . . . 6  |-  (EXMID  -> STAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
1615alrimiv 1874 . . . . 5  |-  (EXMID  ->  A. ySTAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
17 dfss4st 3370 . . . . 5  |-  ( A. ySTAB  y  e.  ( g " ( B  \ 
( f " U. D ) ) )  ->  ( ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1816, 17syl 14 . . . 4  |-  (EXMID  ->  (
( g " ( B  \  ( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1912, 18imbitrid 154 . . 3  |-  (EXMID  ->  ( ran  g  C_  A  -> 
( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  =  ( g
" ( B  \ 
( f " U. D ) ) ) ) )
2019imp 124 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) )
219, 20eqtr2d 2211 1  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  STAB wstab 830  DECID wdc 834   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   _Vcvv 2739    \ cdif 3128    C_ wss 3131   U.cuni 3811  EXMIDwem 4196   ran crn 4629   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-exmid 4197  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  sbthlemi4  6961  sbthlemi5  6962
  Copyright terms: Public domain W3C validator