Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi3 | Unicode version |
Description: Lemma for isbth 6944. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 |
Ref | Expression |
---|---|
sbthlemi3 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | . . . . . . 7 | |
2 | sbthlem.2 | . . . . . . 7 | |
3 | 1, 2 | sbthlem2 6935 | . . . . . 6 |
4 | 1, 2 | sbthlem1 6934 | . . . . . 6 |
5 | 3, 4 | jctil 310 | . . . . 5 |
6 | eqss 3162 | . . . . 5 | |
7 | 5, 6 | sylibr 133 | . . . 4 |
8 | 7 | difeq2d 3245 | . . 3 |
9 | 8 | adantl 275 | . 2 EXMID |
10 | imassrn 4964 | . . . . 5 | |
11 | sstr2 3154 | . . . . 5 | |
12 | 10, 11 | ax-mp 5 | . . . 4 |
13 | exmidexmid 4182 | . . . . . . 7 EXMID DECID | |
14 | dcstab 839 | . . . . . . 7 DECID STAB | |
15 | 13, 14 | syl 14 | . . . . . 6 EXMID STAB |
16 | 15 | alrimiv 1867 | . . . . 5 EXMID STAB |
17 | dfss4st 3360 | . . . . 5 STAB | |
18 | 16, 17 | syl 14 | . . . 4 EXMID |
19 | 12, 18 | syl5ib 153 | . . 3 EXMID |
20 | 19 | imp 123 | . 2 EXMID |
21 | 9, 20 | eqtr2d 2204 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 STAB wstab 825 DECID wdc 829 wal 1346 wceq 1348 wcel 2141 cab 2156 cvv 2730 cdif 3118 wss 3121 cuni 3796 EXMIDwem 4180 crn 4612 cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-exmid 4181 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: sbthlemi4 6937 sbthlemi5 6938 |
Copyright terms: Public domain | W3C validator |