Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi3 | Unicode version |
Description: Lemma for isbth 6932. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 |
Ref | Expression |
---|---|
sbthlemi3 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | . . . . . . 7 | |
2 | sbthlem.2 | . . . . . . 7 | |
3 | 1, 2 | sbthlem2 6923 | . . . . . 6 |
4 | 1, 2 | sbthlem1 6922 | . . . . . 6 |
5 | 3, 4 | jctil 310 | . . . . 5 |
6 | eqss 3157 | . . . . 5 | |
7 | 5, 6 | sylibr 133 | . . . 4 |
8 | 7 | difeq2d 3240 | . . 3 |
9 | 8 | adantl 275 | . 2 EXMID |
10 | imassrn 4957 | . . . . 5 | |
11 | sstr2 3149 | . . . . 5 | |
12 | 10, 11 | ax-mp 5 | . . . 4 |
13 | exmidexmid 4175 | . . . . . . 7 EXMID DECID | |
14 | dcstab 834 | . . . . . . 7 DECID STAB | |
15 | 13, 14 | syl 14 | . . . . . 6 EXMID STAB |
16 | 15 | alrimiv 1862 | . . . . 5 EXMID STAB |
17 | dfss4st 3355 | . . . . 5 STAB | |
18 | 16, 17 | syl 14 | . . . 4 EXMID |
19 | 12, 18 | syl5ib 153 | . . 3 EXMID |
20 | 19 | imp 123 | . 2 EXMID |
21 | 9, 20 | eqtr2d 2199 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 STAB wstab 820 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 cab 2151 cvv 2726 cdif 3113 wss 3116 cuni 3789 EXMIDwem 4173 crn 4605 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-exmid 4174 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: sbthlemi4 6925 sbthlemi5 6926 |
Copyright terms: Public domain | W3C validator |