Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi3 | Unicode version |
Description: Lemma for isbth 6956. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 |
Ref | Expression |
---|---|
sbthlemi3 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | . . . . . . 7 | |
2 | sbthlem.2 | . . . . . . 7 | |
3 | 1, 2 | sbthlem2 6947 | . . . . . 6 |
4 | 1, 2 | sbthlem1 6946 | . . . . . 6 |
5 | 3, 4 | jctil 312 | . . . . 5 |
6 | eqss 3168 | . . . . 5 | |
7 | 5, 6 | sylibr 134 | . . . 4 |
8 | 7 | difeq2d 3251 | . . 3 |
9 | 8 | adantl 277 | . 2 EXMID |
10 | imassrn 4974 | . . . . 5 | |
11 | sstr2 3160 | . . . . 5 | |
12 | 10, 11 | ax-mp 5 | . . . 4 |
13 | exmidexmid 4191 | . . . . . . 7 EXMID DECID | |
14 | dcstab 844 | . . . . . . 7 DECID STAB | |
15 | 13, 14 | syl 14 | . . . . . 6 EXMID STAB |
16 | 15 | alrimiv 1872 | . . . . 5 EXMID STAB |
17 | dfss4st 3366 | . . . . 5 STAB | |
18 | 16, 17 | syl 14 | . . . 4 EXMID |
19 | 12, 18 | syl5ib 154 | . . 3 EXMID |
20 | 19 | imp 124 | . 2 EXMID |
21 | 9, 20 | eqtr2d 2209 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 STAB wstab 830 DECID wdc 834 wal 1351 wceq 1353 wcel 2146 cab 2161 cvv 2735 cdif 3124 wss 3127 cuni 3805 EXMIDwem 4189 crn 4621 cima 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-exmid 4190 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 |
This theorem is referenced by: sbthlemi4 6949 sbthlemi5 6950 |
Copyright terms: Public domain | W3C validator |