ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 Unicode version

Theorem sbthlemi3 7087
Description: Lemma for isbth 7095. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi3  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7  |-  A  e. 
_V
2 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem2 7086 . . . . . 6  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
41, 2sbthlem1 7085 . . . . . 6  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
53, 4jctil 312 . . . . 5  |-  ( ran  g  C_  A  ->  ( U. D  C_  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) )  /\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  U. D ) )
6 eqss 3216 . . . . 5  |-  ( U. D  =  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  <->  ( U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  /\  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  U. D ) )
75, 6sylibr 134 . . . 4  |-  ( ran  g  C_  A  ->  U. D  =  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )
87difeq2d 3299 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( A 
\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )
98adantl 277 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  =  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
10 imassrn 5052 . . . . 5  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
11 sstr2 3208 . . . . 5  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f " U. D ) ) ) 
C_  A ) )
1210, 11ax-mp 5 . . . 4  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A )
13 exmidexmid 4256 . . . . . . 7  |-  (EXMID  -> DECID  y  e.  (
g " ( B 
\  ( f " U. D ) ) ) )
14 dcstab 846 . . . . . . 7  |-  (DECID  y  e.  ( g " ( B  \  ( f " U. D ) ) )  -> STAB  y  e.  ( g
" ( B  \ 
( f " U. D ) ) ) )
1513, 14syl 14 . . . . . 6  |-  (EXMID  -> STAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
1615alrimiv 1898 . . . . 5  |-  (EXMID  ->  A. ySTAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
17 dfss4st 3414 . . . . 5  |-  ( A. ySTAB  y  e.  ( g " ( B  \ 
( f " U. D ) ) )  ->  ( ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1816, 17syl 14 . . . 4  |-  (EXMID  ->  (
( g " ( B  \  ( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1912, 18imbitrid 154 . . 3  |-  (EXMID  ->  ( ran  g  C_  A  -> 
( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  =  ( g
" ( B  \ 
( f " U. D ) ) ) ) )
2019imp 124 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) )
219, 20eqtr2d 2241 1  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  STAB wstab 832  DECID wdc 836   A.wal 1371    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776    \ cdif 3171    C_ wss 3174   U.cuni 3864  EXMIDwem 4254   ran crn 4694   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-exmid 4255  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  sbthlemi4  7088  sbthlemi5  7089
  Copyright terms: Public domain W3C validator