ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 Unicode version

Theorem sbthlemi3 7061
Description: Lemma for isbth 7069. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi3  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7  |-  A  e. 
_V
2 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem2 7060 . . . . . 6  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
41, 2sbthlem1 7059 . . . . . 6  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
53, 4jctil 312 . . . . 5  |-  ( ran  g  C_  A  ->  ( U. D  C_  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) )  /\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  U. D ) )
6 eqss 3208 . . . . 5  |-  ( U. D  =  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  <->  ( U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  /\  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  U. D ) )
75, 6sylibr 134 . . . 4  |-  ( ran  g  C_  A  ->  U. D  =  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )
87difeq2d 3291 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( A 
\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )
98adantl 277 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  =  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
10 imassrn 5033 . . . . 5  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
11 sstr2 3200 . . . . 5  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f " U. D ) ) ) 
C_  A ) )
1210, 11ax-mp 5 . . . 4  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A )
13 exmidexmid 4240 . . . . . . 7  |-  (EXMID  -> DECID  y  e.  (
g " ( B 
\  ( f " U. D ) ) ) )
14 dcstab 846 . . . . . . 7  |-  (DECID  y  e.  ( g " ( B  \  ( f " U. D ) ) )  -> STAB  y  e.  ( g
" ( B  \ 
( f " U. D ) ) ) )
1513, 14syl 14 . . . . . 6  |-  (EXMID  -> STAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
1615alrimiv 1897 . . . . 5  |-  (EXMID  ->  A. ySTAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
17 dfss4st 3406 . . . . 5  |-  ( A. ySTAB  y  e.  ( g " ( B  \ 
( f " U. D ) ) )  ->  ( ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1816, 17syl 14 . . . 4  |-  (EXMID  ->  (
( g " ( B  \  ( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1912, 18imbitrid 154 . . 3  |-  (EXMID  ->  ( ran  g  C_  A  -> 
( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  =  ( g
" ( B  \ 
( f " U. D ) ) ) ) )
2019imp 124 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) )
219, 20eqtr2d 2239 1  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  STAB wstab 832  DECID wdc 836   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191   _Vcvv 2772    \ cdif 3163    C_ wss 3166   U.cuni 3850  EXMIDwem 4238   ran crn 4676   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-exmid 4239  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  sbthlemi4  7062  sbthlemi5  7063
  Copyright terms: Public domain W3C validator