ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 Unicode version

Theorem sbthlemi3 6915
Description: Lemma for isbth 6923. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi3  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7  |-  A  e. 
_V
2 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem2 6914 . . . . . 6  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
41, 2sbthlem1 6913 . . . . . 6  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
53, 4jctil 310 . . . . 5  |-  ( ran  g  C_  A  ->  ( U. D  C_  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) )  /\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  U. D ) )
6 eqss 3152 . . . . 5  |-  ( U. D  =  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  <->  ( U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  /\  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  U. D ) )
75, 6sylibr 133 . . . 4  |-  ( ran  g  C_  A  ->  U. D  =  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )
87difeq2d 3235 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( A 
\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )
98adantl 275 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  =  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
10 imassrn 4951 . . . . 5  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
11 sstr2 3144 . . . . 5  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f " U. D ) ) ) 
C_  A ) )
1210, 11ax-mp 5 . . . 4  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A )
13 exmidexmid 4169 . . . . . . 7  |-  (EXMID  -> DECID  y  e.  (
g " ( B 
\  ( f " U. D ) ) ) )
14 dcstab 834 . . . . . . 7  |-  (DECID  y  e.  ( g " ( B  \  ( f " U. D ) ) )  -> STAB  y  e.  ( g
" ( B  \ 
( f " U. D ) ) ) )
1513, 14syl 14 . . . . . 6  |-  (EXMID  -> STAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
1615alrimiv 1861 . . . . 5  |-  (EXMID  ->  A. ySTAB  y  e.  ( g " ( B  \  ( f " U. D ) ) ) )
17 dfss4st 3350 . . . . 5  |-  ( A. ySTAB  y  e.  ( g " ( B  \ 
( f " U. D ) ) )  ->  ( ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1816, 17syl 14 . . . 4  |-  (EXMID  ->  (
( g " ( B  \  ( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) ) )
1912, 18syl5ib 153 . . 3  |-  (EXMID  ->  ( ran  g  C_  A  -> 
( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  =  ( g
" ( B  \ 
( f " U. D ) ) ) ) )
2019imp 123 . 2  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) )
219, 20eqtr2d 2198 1  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  STAB wstab 820  DECID wdc 824   A.wal 1340    = wceq 1342    e. wcel 2135   {cab 2150   _Vcvv 2721    \ cdif 3108    C_ wss 3111   U.cuni 3783  EXMIDwem 4167   ran crn 4599   "cima 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-exmid 4168  df-xp 4604  df-cnv 4606  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611
This theorem is referenced by:  sbthlemi4  6916  sbthlemi5  6917
  Copyright terms: Public domain W3C validator