Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isstruct2r | Unicode version |
Description: The property of being a structure with components in . (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstruct2r | Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . 2 | |
2 | simplr 525 | . 2 | |
3 | simprr 527 | . 2 | |
4 | simprl 526 | . . . 4 | |
5 | 4 | elexd 2743 | . . 3 |
6 | elex 2741 | . . . 4 | |
7 | 6 | ad2antrr 485 | . . 3 |
8 | simpr 109 | . . . . . 6 | |
9 | 8 | eleq1d 2239 | . . . . 5 |
10 | simpl 108 | . . . . . . 7 | |
11 | 10 | difeq1d 3244 | . . . . . 6 |
12 | 11 | funeqd 5220 | . . . . 5 |
13 | 10 | dmeqd 4813 | . . . . . 6 |
14 | 8 | fveq2d 5500 | . . . . . 6 |
15 | 13, 14 | sseq12d 3178 | . . . . 5 |
16 | 9, 12, 15 | 3anbi123d 1307 | . . . 4 |
17 | df-struct 12418 | . . . 4 Struct | |
18 | 16, 17 | brabga 4249 | . . 3 Struct |
19 | 5, 7, 18 | syl2anc 409 | . 2 Struct |
20 | 1, 2, 3, 19 | mpbir3and 1175 | 1 Struct |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cvv 2730 cdif 3118 cin 3120 wss 3121 c0 3414 csn 3583 class class class wbr 3989 cxp 4609 cdm 4611 wfun 5192 cfv 5198 cle 7955 cn 8878 cfz 9965 Struct cstr 12412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-struct 12418 |
This theorem is referenced by: isstructr 12431 |
Copyright terms: Public domain | W3C validator |