ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstruct2r Unicode version

Theorem isstruct2r 12405
Description: The property of being a structure with components in  ( 1st `  X
) ... ( 2nd `  X
). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstruct2r  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )

Proof of Theorem isstruct2r
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 519 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) )
2 simplr 520 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  Fun  ( F 
\  { (/) } ) )
3 simprr 522 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  dom  F  C_  ( ... `  X ) )
4 simprl 521 . . . 4  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F  e.  V )
54elexd 2739 . . 3  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F  e.  _V )
6 elex 2737 . . . 4  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  X  e.  _V )
76ad2antrr 480 . . 3  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  X  e.  _V )
8 simpr 109 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  x  =  X )
98eleq1d 2235 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  <->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
10 simpl 108 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  X )  ->  f  =  F )
1110difeq1d 3239 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( f  \  { (/)
} )  =  ( F  \  { (/) } ) )
1211funeqd 5210 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( Fun  ( f 
\  { (/) } )  <->  Fun  ( F  \  { (/)
} ) ) )
1310dmeqd 4806 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  dom  f  =  dom  F )
148fveq2d 5490 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ... `  x
)  =  ( ... `  X ) )
1513, 14sseq12d 3173 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( dom  f  C_  ( ... `  x )  <->  dom  F  C_  ( ... `  X ) ) )
169, 12, 153anbi123d 1302 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) )  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
17 df-struct 12396 . . . 4  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
1816, 17brabga 4242 . . 3  |-  ( ( F  e.  _V  /\  X  e.  _V )  ->  ( F Struct  X  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
195, 7, 18syl2anc 409 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  ( F Struct  X  <-> 
( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  X
) ) ) )
201, 2, 3, 19mpbir3and 1170 1  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   _Vcvv 2726    \ cdif 3113    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576   class class class wbr 3982    X. cxp 4602   dom cdm 4604   Fun wfun 5182   ` cfv 5188    <_ cle 7934   NNcn 8857   ...cfz 9944   Struct cstr 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-struct 12396
This theorem is referenced by:  isstructr  12409
  Copyright terms: Public domain W3C validator