ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstruct2r Unicode version

Theorem isstruct2r 13009
Description: The property of being a structure with components in  ( 1st `  X
) ... ( 2nd `  X
). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstruct2r  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )

Proof of Theorem isstruct2r
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) )
2 simplr 528 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  Fun  ( F 
\  { (/) } ) )
3 simprr 531 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  dom  F  C_  ( ... `  X ) )
4 simprl 529 . . . 4  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F  e.  V )
54elexd 2793 . . 3  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F  e.  _V )
6 elex 2791 . . . 4  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  X  e.  _V )
76ad2antrr 488 . . 3  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  X  e.  _V )
8 simpr 110 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  x  =  X )
98eleq1d 2278 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  <->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
10 simpl 109 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  X )  ->  f  =  F )
1110difeq1d 3301 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( f  \  { (/)
} )  =  ( F  \  { (/) } ) )
1211funeqd 5316 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( Fun  ( f 
\  { (/) } )  <->  Fun  ( F  \  { (/)
} ) ) )
1310dmeqd 4902 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  dom  f  =  dom  F )
148fveq2d 5607 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ... `  x
)  =  ( ... `  X ) )
1513, 14sseq12d 3235 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( dom  f  C_  ( ... `  x )  <->  dom  F  C_  ( ... `  X ) ) )
169, 12, 153anbi123d 1327 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) )  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
17 df-struct 13000 . . . 4  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
1816, 17brabga 4331 . . 3  |-  ( ( F  e.  _V  /\  X  e.  _V )  ->  ( F Struct  X  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
195, 7, 18syl2anc 411 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  ( F Struct  X  <-> 
( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  X
) ) ) )
201, 2, 3, 19mpbir3and 1185 1  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   _Vcvv 2779    \ cdif 3174    i^i cin 3176    C_ wss 3177   (/)c0 3471   {csn 3646   class class class wbr 4062    X. cxp 4694   dom cdm 4696   Fun wfun 5288   ` cfv 5294    <_ cle 8150   NNcn 9078   ...cfz 10172   Struct cstr 12994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-struct 13000
This theorem is referenced by:  isstructr  13013
  Copyright terms: Public domain W3C validator