| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isstruct2r | Unicode version | ||
| Description: The property of being a
structure with components in
|
| Ref | Expression |
|---|---|
| isstruct2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. 2
| |
| 2 | simplr 528 |
. 2
| |
| 3 | simprr 531 |
. 2
| |
| 4 | simprl 529 |
. . . 4
| |
| 5 | 4 | elexd 2776 |
. . 3
|
| 6 | elex 2774 |
. . . 4
| |
| 7 | 6 | ad2antrr 488 |
. . 3
|
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | 8 | eleq1d 2265 |
. . . . 5
|
| 10 | simpl 109 |
. . . . . . 7
| |
| 11 | 10 | difeq1d 3281 |
. . . . . 6
|
| 12 | 11 | funeqd 5281 |
. . . . 5
|
| 13 | 10 | dmeqd 4869 |
. . . . . 6
|
| 14 | 8 | fveq2d 5565 |
. . . . . 6
|
| 15 | 13, 14 | sseq12d 3215 |
. . . . 5
|
| 16 | 9, 12, 15 | 3anbi123d 1323 |
. . . 4
|
| 17 | df-struct 12705 |
. . . 4
| |
| 18 | 16, 17 | brabga 4299 |
. . 3
|
| 19 | 5, 7, 18 | syl2anc 411 |
. 2
|
| 20 | 1, 2, 3, 19 | mpbir3and 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-struct 12705 |
| This theorem is referenced by: isstructr 12718 |
| Copyright terms: Public domain | W3C validator |