ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstruct2r Unicode version

Theorem isstruct2r 12009
Description: The property of being a structure with components in  ( 1st `  X
) ... ( 2nd `  X
). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstruct2r  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )

Proof of Theorem isstruct2r
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 519 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) )
2 simplr 520 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  Fun  ( F 
\  { (/) } ) )
3 simprr 522 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  dom  F  C_  ( ... `  X ) )
4 simprl 521 . . . 4  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F  e.  V )
54elexd 2702 . . 3  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F  e.  _V )
6 elex 2700 . . . 4  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  X  e.  _V )
76ad2antrr 480 . . 3  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  X  e.  _V )
8 simpr 109 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  x  =  X )
98eleq1d 2209 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  <->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
10 simpl 108 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  X )  ->  f  =  F )
1110difeq1d 3198 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( f  \  { (/)
} )  =  ( F  \  { (/) } ) )
1211funeqd 5153 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( Fun  ( f 
\  { (/) } )  <->  Fun  ( F  \  { (/)
} ) ) )
1310dmeqd 4749 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  dom  f  =  dom  F )
148fveq2d 5433 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ... `  x
)  =  ( ... `  X ) )
1513, 14sseq12d 3133 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( dom  f  C_  ( ... `  x )  <->  dom  F  C_  ( ... `  X ) ) )
169, 12, 153anbi123d 1291 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) )  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
17 df-struct 12000 . . . 4  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
1816, 17brabga 4194 . . 3  |-  ( ( F  e.  _V  /\  X  e.  _V )  ->  ( F Struct  X  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
195, 7, 18syl2anc 409 . 2  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  ( F Struct  X  <-> 
( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  X
) ) ) )
201, 2, 3, 19mpbir3and 1165 1  |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   _Vcvv 2689    \ cdif 3073    i^i cin 3075    C_ wss 3076   (/)c0 3368   {csn 3532   class class class wbr 3937    X. cxp 4545   dom cdm 4547   Fun wfun 5125   ` cfv 5131    <_ cle 7825   NNcn 8744   ...cfz 9821   Struct cstr 11994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-struct 12000
This theorem is referenced by:  isstructr  12013
  Copyright terms: Public domain W3C validator