ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3g Unicode version

Theorem phplem3g 7013
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 7011 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem3g  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )

Proof of Theorem phplem3g
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . . . . 5  |-  ( b  =  B  ->  (
b  e.  suc  A  <->  B  e.  suc  A ) )
21anbi2d 464 . . . 4  |-  ( b  =  B  ->  (
( A  e.  om  /\  b  e.  suc  A
)  <->  ( A  e. 
om  /\  B  e.  suc  A ) ) )
3 sneq 3677 . . . . . 6  |-  ( b  =  B  ->  { b }  =  { B } )
43difeq2d 3322 . . . . 5  |-  ( b  =  B  ->  ( suc  A  \  { b } )  =  ( suc  A  \  { B } ) )
54breq2d 4094 . . . 4  |-  ( b  =  B  ->  ( A  ~~  ( suc  A  \  { b } )  <-> 
A  ~~  ( suc  A 
\  { B }
) ) )
62, 5imbi12d 234 . . 3  |-  ( b  =  B  ->  (
( ( A  e. 
om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) )  <->  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) ) ) )
7 eleq1 2292 . . . . . . 7  |-  ( a  =  A  ->  (
a  e.  om  <->  A  e.  om ) )
8 suceq 4492 . . . . . . . 8  |-  ( a  =  A  ->  suc  a  =  suc  A )
98eleq2d 2299 . . . . . . 7  |-  ( a  =  A  ->  (
b  e.  suc  a  <->  b  e.  suc  A ) )
107, 9anbi12d 473 . . . . . 6  |-  ( a  =  A  ->  (
( a  e.  om  /\  b  e.  suc  a
)  <->  ( A  e. 
om  /\  b  e.  suc  A ) ) )
11 id 19 . . . . . . 7  |-  ( a  =  A  ->  a  =  A )
128difeq1d 3321 . . . . . . 7  |-  ( a  =  A  ->  ( suc  a  \  { b } )  =  ( suc  A  \  {
b } ) )
1311, 12breq12d 4095 . . . . . 6  |-  ( a  =  A  ->  (
a  ~~  ( suc  a  \  { b } )  <->  A  ~~  ( suc 
A  \  { b } ) ) )
1410, 13imbi12d 234 . . . . 5  |-  ( a  =  A  ->  (
( ( a  e. 
om  /\  b  e.  suc  a )  ->  a  ~~  ( suc  a  \  { b } ) )  <->  ( ( A  e.  om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) ) ) )
15 vex 2802 . . . . . 6  |-  a  e. 
_V
16 vex 2802 . . . . . 6  |-  b  e. 
_V
1715, 16phplem3 7011 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  suc  a )  ->  a  ~~  ( suc  a  \  { b } ) )
1814, 17vtoclg 2861 . . . 4  |-  ( A  e.  om  ->  (
( A  e.  om  /\  b  e.  suc  A
)  ->  A  ~~  ( suc  A  \  {
b } ) ) )
1918anabsi5 579 . . 3  |-  ( ( A  e.  om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) )
206, 19vtoclg 2861 . 2  |-  ( B  e.  suc  A  -> 
( ( A  e. 
om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) ) )
2120anabsi7 581 1  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    \ cdif 3194   {csn 3666   class class class wbr 4082   suc csuc 4455   omcom 4681    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-en 6886
This theorem is referenced by:  phplem4dom  7019  phpm  7023  phplem4on  7025
  Copyright terms: Public domain W3C validator