ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3g Unicode version

Theorem phplem3g 6822
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6820 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem3g  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )

Proof of Theorem phplem3g
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . . . . 5  |-  ( b  =  B  ->  (
b  e.  suc  A  <->  B  e.  suc  A ) )
21anbi2d 460 . . . 4  |-  ( b  =  B  ->  (
( A  e.  om  /\  b  e.  suc  A
)  <->  ( A  e. 
om  /\  B  e.  suc  A ) ) )
3 sneq 3587 . . . . . 6  |-  ( b  =  B  ->  { b }  =  { B } )
43difeq2d 3240 . . . . 5  |-  ( b  =  B  ->  ( suc  A  \  { b } )  =  ( suc  A  \  { B } ) )
54breq2d 3994 . . . 4  |-  ( b  =  B  ->  ( A  ~~  ( suc  A  \  { b } )  <-> 
A  ~~  ( suc  A 
\  { B }
) ) )
62, 5imbi12d 233 . . 3  |-  ( b  =  B  ->  (
( ( A  e. 
om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) )  <->  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) ) ) )
7 eleq1 2229 . . . . . . 7  |-  ( a  =  A  ->  (
a  e.  om  <->  A  e.  om ) )
8 suceq 4380 . . . . . . . 8  |-  ( a  =  A  ->  suc  a  =  suc  A )
98eleq2d 2236 . . . . . . 7  |-  ( a  =  A  ->  (
b  e.  suc  a  <->  b  e.  suc  A ) )
107, 9anbi12d 465 . . . . . 6  |-  ( a  =  A  ->  (
( a  e.  om  /\  b  e.  suc  a
)  <->  ( A  e. 
om  /\  b  e.  suc  A ) ) )
11 id 19 . . . . . . 7  |-  ( a  =  A  ->  a  =  A )
128difeq1d 3239 . . . . . . 7  |-  ( a  =  A  ->  ( suc  a  \  { b } )  =  ( suc  A  \  {
b } ) )
1311, 12breq12d 3995 . . . . . 6  |-  ( a  =  A  ->  (
a  ~~  ( suc  a  \  { b } )  <->  A  ~~  ( suc 
A  \  { b } ) ) )
1410, 13imbi12d 233 . . . . 5  |-  ( a  =  A  ->  (
( ( a  e. 
om  /\  b  e.  suc  a )  ->  a  ~~  ( suc  a  \  { b } ) )  <->  ( ( A  e.  om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) ) ) )
15 vex 2729 . . . . . 6  |-  a  e. 
_V
16 vex 2729 . . . . . 6  |-  b  e. 
_V
1715, 16phplem3 6820 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  suc  a )  ->  a  ~~  ( suc  a  \  { b } ) )
1814, 17vtoclg 2786 . . . 4  |-  ( A  e.  om  ->  (
( A  e.  om  /\  b  e.  suc  A
)  ->  A  ~~  ( suc  A  \  {
b } ) ) )
1918anabsi5 569 . . 3  |-  ( ( A  e.  om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) )
206, 19vtoclg 2786 . 2  |-  ( B  e.  suc  A  -> 
( ( A  e. 
om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) ) )
2120anabsi7 571 1  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    \ cdif 3113   {csn 3576   class class class wbr 3982   suc csuc 4343   omcom 4567    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-en 6707
This theorem is referenced by:  phplem4dom  6828  phpm  6831  phplem4on  6833
  Copyright terms: Public domain W3C validator