ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3g Unicode version

Theorem phplem3g 6914
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6912 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem3g  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )

Proof of Theorem phplem3g
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . . . 5  |-  ( b  =  B  ->  (
b  e.  suc  A  <->  B  e.  suc  A ) )
21anbi2d 464 . . . 4  |-  ( b  =  B  ->  (
( A  e.  om  /\  b  e.  suc  A
)  <->  ( A  e. 
om  /\  B  e.  suc  A ) ) )
3 sneq 3630 . . . . . 6  |-  ( b  =  B  ->  { b }  =  { B } )
43difeq2d 3278 . . . . 5  |-  ( b  =  B  ->  ( suc  A  \  { b } )  =  ( suc  A  \  { B } ) )
54breq2d 4042 . . . 4  |-  ( b  =  B  ->  ( A  ~~  ( suc  A  \  { b } )  <-> 
A  ~~  ( suc  A 
\  { B }
) ) )
62, 5imbi12d 234 . . 3  |-  ( b  =  B  ->  (
( ( A  e. 
om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) )  <->  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) ) ) )
7 eleq1 2256 . . . . . . 7  |-  ( a  =  A  ->  (
a  e.  om  <->  A  e.  om ) )
8 suceq 4434 . . . . . . . 8  |-  ( a  =  A  ->  suc  a  =  suc  A )
98eleq2d 2263 . . . . . . 7  |-  ( a  =  A  ->  (
b  e.  suc  a  <->  b  e.  suc  A ) )
107, 9anbi12d 473 . . . . . 6  |-  ( a  =  A  ->  (
( a  e.  om  /\  b  e.  suc  a
)  <->  ( A  e. 
om  /\  b  e.  suc  A ) ) )
11 id 19 . . . . . . 7  |-  ( a  =  A  ->  a  =  A )
128difeq1d 3277 . . . . . . 7  |-  ( a  =  A  ->  ( suc  a  \  { b } )  =  ( suc  A  \  {
b } ) )
1311, 12breq12d 4043 . . . . . 6  |-  ( a  =  A  ->  (
a  ~~  ( suc  a  \  { b } )  <->  A  ~~  ( suc 
A  \  { b } ) ) )
1410, 13imbi12d 234 . . . . 5  |-  ( a  =  A  ->  (
( ( a  e. 
om  /\  b  e.  suc  a )  ->  a  ~~  ( suc  a  \  { b } ) )  <->  ( ( A  e.  om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) ) ) )
15 vex 2763 . . . . . 6  |-  a  e. 
_V
16 vex 2763 . . . . . 6  |-  b  e. 
_V
1715, 16phplem3 6912 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  suc  a )  ->  a  ~~  ( suc  a  \  { b } ) )
1814, 17vtoclg 2821 . . . 4  |-  ( A  e.  om  ->  (
( A  e.  om  /\  b  e.  suc  A
)  ->  A  ~~  ( suc  A  \  {
b } ) ) )
1918anabsi5 579 . . 3  |-  ( ( A  e.  om  /\  b  e.  suc  A )  ->  A  ~~  ( suc  A  \  { b } ) )
206, 19vtoclg 2821 . 2  |-  ( B  e.  suc  A  -> 
( ( A  e. 
om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) ) )
2120anabsi7 581 1  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    \ cdif 3151   {csn 3619   class class class wbr 4030   suc csuc 4397   omcom 4623    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-en 6797
This theorem is referenced by:  phplem4dom  6920  phpm  6923  phplem4on  6925
  Copyright terms: Public domain W3C validator