ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2other2 Unicode version

Theorem en2other2 7256
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) } )  =  X )

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 7255 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )
2 prcom 3694 . . . . . . 7  |-  { X ,  U. ( P  \  { X } ) }  =  { U. ( P  \  { X }
) ,  X }
31, 2eqtrdi 2242 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { U. ( P  \  { X }
) ,  X }
)
43difeq1d 3276 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { U. ( P  \  { X } ) } )  =  ( { U. ( P  \  { X } ) ,  X }  \  { U. ( P  \  { X }
) } ) )
5 difprsnss 3756 . . . . 5  |-  ( { U. ( P  \  { X } ) ,  X }  \  { U. ( P  \  { X } ) } ) 
C_  { X }
64, 5eqsstrdi 3231 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { U. ( P  \  { X } ) } ) 
C_  { X }
)
7 simpl 109 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  P )
8 1onn 6573 . . . . . . . . . 10  |-  1o  e.  om
98a1i 9 . . . . . . . . 9  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  1o  e.  om )
10 simpr 110 . . . . . . . . . 10  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  2o )
11 df-2o 6470 . . . . . . . . . 10  |-  2o  =  suc  1o
1210, 11breqtrdi 4070 . . . . . . . . 9  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  suc  1o )
13 dif1en 6935 . . . . . . . . 9  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  X  e.  P )  ->  ( P  \  { X } )  ~~  1o )
149, 12, 7, 13syl3anc 1249 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { X } )  ~~  1o )
15 en1uniel 6858 . . . . . . . 8  |-  ( ( P  \  { X } )  ~~  1o  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
16 eldifsni 3747 . . . . . . . 8  |-  ( U. ( P  \  { X } )  e.  ( P  \  { X } )  ->  U. ( P  \  { X }
)  =/=  X )
1714, 15, 163syl 17 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  =/=  X
)
1817necomd 2450 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  =/=  U. ( P 
\  { X }
) )
19 eldifsn 3745 . . . . . 6  |-  ( X  e.  ( P  \  { U. ( P  \  { X } ) } )  <->  ( X  e.  P  /\  X  =/=  U. ( P  \  { X } ) ) )
207, 18, 19sylanbrc 417 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  ( P  \  { U. ( P 
\  { X }
) } ) )
2120snssd 3763 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  { X }  C_  ( P  \  { U. ( P  \  { X }
) } ) )
226, 21eqssd 3196 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { U. ( P  \  { X } ) } )  =  { X }
)
2322unieqd 3846 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) } )  =  U. { X } )
24 unisng 3852 . . 3  |-  ( X  e.  P  ->  U. { X }  =  X
)
2524adantr 276 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. { X }  =  X )
2623, 25eqtrd 2226 1  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) } )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364    \ cdif 3150   {csn 3618   {cpr 3619   U.cuni 3835   class class class wbr 4029   suc csuc 4396   omcom 4622   1oc1o 6462   2oc2o 6463    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator