Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en2other2 | Unicode version |
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2other2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2eleq 7172 | . . . . . . 7 | |
2 | prcom 3659 | . . . . . . 7 | |
3 | 1, 2 | eqtrdi 2219 | . . . . . 6 |
4 | 3 | difeq1d 3244 | . . . . 5 |
5 | difprsnss 3718 | . . . . 5 | |
6 | 4, 5 | eqsstrdi 3199 | . . . 4 |
7 | simpl 108 | . . . . . 6 | |
8 | 1onn 6499 | . . . . . . . . . 10 | |
9 | 8 | a1i 9 | . . . . . . . . 9 |
10 | simpr 109 | . . . . . . . . . 10 | |
11 | df-2o 6396 | . . . . . . . . . 10 | |
12 | 10, 11 | breqtrdi 4030 | . . . . . . . . 9 |
13 | dif1en 6857 | . . . . . . . . 9 | |
14 | 9, 12, 7, 13 | syl3anc 1233 | . . . . . . . 8 |
15 | en1uniel 6782 | . . . . . . . 8 | |
16 | eldifsni 3712 | . . . . . . . 8 | |
17 | 14, 15, 16 | 3syl 17 | . . . . . . 7 |
18 | 17 | necomd 2426 | . . . . . 6 |
19 | eldifsn 3710 | . . . . . 6 | |
20 | 7, 18, 19 | sylanbrc 415 | . . . . 5 |
21 | 20 | snssd 3725 | . . . 4 |
22 | 6, 21 | eqssd 3164 | . . 3 |
23 | 22 | unieqd 3807 | . 2 |
24 | unisng 3813 | . . 3 | |
25 | 24 | adantr 274 | . 2 |
26 | 23, 25 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 cdif 3118 csn 3583 cpr 3584 cuni 3796 class class class wbr 3989 csuc 4350 com 4574 c1o 6388 c2o 6389 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-2o 6396 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |