![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difexg | GIF version |
Description: Existence of a difference. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
difexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3166 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | ssexg 4025 | . 2 ⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 418 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1461 Vcvv 2655 ∖ cdif 3032 ⊆ wss 3035 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-dif 3037 df-in 3041 df-ss 3048 |
This theorem is referenced by: frirrg 4230 2oconcl 6288 phplem4dom 6707 fidifsnen 6715 findcard 6733 findcard2 6734 findcard2s 6735 fisseneq 6771 difinfsn 6935 exmidfodomrlemim 7002 |
Copyright terms: Public domain | W3C validator |