Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difexg | GIF version |
Description: Existence of a difference. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
difexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3253 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | ssexg 4128 | . 2 ⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 422 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 |
This theorem is referenced by: frirrg 4335 2oconcl 6418 phplem4dom 6840 fidifsnen 6848 findcard 6866 findcard2 6867 findcard2s 6868 fisseneq 6909 difinfsn 7077 ismkvnex 7131 exmidfodomrlemim 7178 |
Copyright terms: Public domain | W3C validator |