| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difexg | GIF version | ||
| Description: Existence of a difference. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| difexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3290 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 4173 | . 2 ⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 |
| This theorem is referenced by: frirrg 4386 2oconcl 6506 phplem4dom 6932 fidifsnen 6940 findcard 6958 findcard2 6959 findcard2s 6960 fisseneq 7004 difinfsn 7175 ismkvnex 7230 exmidfodomrlemim 7280 |
| Copyright terms: Public domain | W3C validator |