| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difexg | GIF version | ||
| Description: Existence of a difference. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| difexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3303 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 4190 | . 2 ⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3167 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4169 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 |
| This theorem is referenced by: frirrg 4404 2oconcl 6537 phplem4dom 6973 fidifsnen 6981 findcard 6999 findcard2 7000 findcard2s 7001 fisseneq 7045 difinfsn 7216 ismkvnex 7271 exmidfodomrlemim 7324 |
| Copyright terms: Public domain | W3C validator |