| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difexg | GIF version | ||
| Description: Existence of a difference. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| difexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3330 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 4222 | . 2 ⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 |
| This theorem is referenced by: frirrg 4440 2oconcl 6583 phplem4dom 7019 fidifsnen 7028 findcard 7046 findcard2 7047 findcard2s 7048 fisseneq 7092 difinfsn 7263 ismkvnex 7318 exmidfodomrlemim 7375 |
| Copyright terms: Public domain | W3C validator |