ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidifsnen Unicode version

Theorem fidifsnen 6836
Description: All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
Assertion
Ref Expression
fidifsnen  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )

Proof of Theorem fidifsnen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 4123 . . . . . 6  |-  ( X  e.  Fin  ->  ( X  \  { A }
)  e.  _V )
213ad2ant1 1008 . . . . 5  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  e.  _V )
32adantr 274 . . . 4  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } )  e.  _V )
4 enrefg 6730 . . . 4  |-  ( ( X  \  { A } )  e.  _V  ->  ( X  \  { A } )  ~~  ( X  \  { A }
) )
53, 4syl 14 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } ) 
~~  ( X  \  { A } ) )
6 sneq 3587 . . . . 5  |-  ( A  =  B  ->  { A }  =  { B } )
76difeq2d 3240 . . . 4  |-  ( A  =  B  ->  ( X  \  { A }
)  =  ( X 
\  { B }
) )
87adantl 275 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } )  =  ( X  \  { B } ) )
95, 8breqtrd 4008 . 2  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } ) 
~~  ( X  \  { B } ) )
102adantr 274 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  ( X  \  { A } )  e.  _V )
11 eqid 2165 . . . 4  |-  ( x  e.  ( X  \  { A } )  |->  if ( x  =  B ,  A ,  x
) )  =  ( x  e.  ( X 
\  { A }
)  |->  if ( x  =  B ,  A ,  x ) )
12 iftrue 3525 . . . . . . . 8  |-  ( x  =  B  ->  if ( x  =  B ,  A ,  x )  =  A )
1312adantl 275 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =  A )
14 simpll2 1027 . . . . . . . 8  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  A  e.  X )
1514adantr 274 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  A  e.  X )
1613, 15eqeltrd 2243 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  X )
17 simpllr 524 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  -.  A  =  B )
1813eqeq1d 2174 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  ( if ( x  =  B ,  A ,  x
)  =  B  <->  A  =  B ) )
1917, 18mtbird 663 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  -.  if ( x  =  B ,  A ,  x
)  =  B )
2019neneqad 2415 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =/=  B )
21 eldifsn 3703 . . . . . 6  |-  ( if ( x  =  B ,  A ,  x
)  e.  ( X 
\  { B }
)  <->  ( if ( x  =  B ,  A ,  x )  e.  X  /\  if ( x  =  B ,  A ,  x )  =/=  B ) )
2216, 20, 21sylanbrc 414 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  ( X  \  { B } ) )
23 iffalse 3528 . . . . . . . 8  |-  ( -.  x  =  B  ->  if ( x  =  B ,  A ,  x
)  =  x )
2423adantl 275 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =  x )
25 eldifi 3244 . . . . . . . 8  |-  ( x  e.  ( X  \  { A } )  ->  x  e.  X )
2625ad2antlr 481 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  x  e.  X )
2724, 26eqeltrd 2243 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  X
)
28 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  -.  x  =  B )
2924eqeq1d 2174 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  ( if ( x  =  B ,  A ,  x )  =  B  <-> 
x  =  B ) )
3028, 29mtbird 663 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  -.  if ( x  =  B ,  A ,  x )  =  B )
3130neneqad 2415 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =/=  B
)
3227, 31, 21sylanbrc 414 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  ( X  \  { B } ) )
33 simpll1 1026 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  X  e.  Fin )
3425adantl 275 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  x  e.  X )
35 simpll3 1028 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  B  e.  X )
36 fidceq 6835 . . . . . . 7  |-  ( ( X  e.  Fin  /\  x  e.  X  /\  B  e.  X )  -> DECID  x  =  B )
3733, 34, 35, 36syl3anc 1228 . . . . . 6  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  -> DECID  x  =  B )
38 exmiddc 826 . . . . . 6  |-  (DECID  x  =  B  ->  ( x  =  B  \/  -.  x  =  B )
)
3937, 38syl 14 . . . . 5  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  -> 
( x  =  B  \/  -.  x  =  B ) )
4022, 32, 39mpjaodan 788 . . . 4  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  if ( x  =  B ,  A ,  x
)  e.  ( X 
\  { B }
) )
41 iftrue 3525 . . . . . . 7  |-  ( y  =  A  ->  if ( y  =  A ,  B ,  y )  =  B )
4241adantl 275 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  y  =  A )  ->  if ( y  =  A ,  B ,  y )  =  B )
43 simpl3 992 . . . . . . . 8  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  B  e.  X )
44 simpr 109 . . . . . . . . . 10  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  -.  A  =  B )
4544neneqad 2415 . . . . . . . . 9  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  A  =/=  B )
4645necomd 2422 . . . . . . . 8  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  B  =/=  A )
47 eldifsn 3703 . . . . . . . 8  |-  ( B  e.  ( X  \  { A } )  <->  ( B  e.  X  /\  B  =/= 
A ) )
4843, 46, 47sylanbrc 414 . . . . . . 7  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  B  e.  ( X  \  { A } ) )
4948ad2antrr 480 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  y  =  A )  ->  B  e.  ( X  \  { A } ) )
5042, 49eqeltrd 2243 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  y  =  A )  ->  if ( y  =  A ,  B ,  y )  e.  ( X 
\  { A }
) )
51 iffalse 3528 . . . . . . 7  |-  ( -.  y  =  A  ->  if ( y  =  A ,  B ,  y )  =  y )
5251adantl 275 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  if ( y  =  A ,  B , 
y )  =  y )
53 eldifi 3244 . . . . . . . 8  |-  ( y  e.  ( X  \  { B } )  -> 
y  e.  X )
5453ad2antlr 481 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  y  e.  X )
55 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  -.  y  =  A )
5655neneqad 2415 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  y  =/=  A )
57 eldifsn 3703 . . . . . . 7  |-  ( y  e.  ( X  \  { A } )  <->  ( y  e.  X  /\  y  =/=  A ) )
5854, 56, 57sylanbrc 414 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  y  e.  ( X 
\  { A }
) )
5952, 58eqeltrd 2243 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  if ( y  =  A ,  B , 
y )  e.  ( X  \  { A } ) )
60 simpll1 1026 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  ->  X  e.  Fin )
6153adantl 275 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  -> 
y  e.  X )
62 simpll2 1027 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  ->  A  e.  X )
63 fidceq 6835 . . . . . . 7  |-  ( ( X  e.  Fin  /\  y  e.  X  /\  A  e.  X )  -> DECID  y  =  A )
6460, 61, 62, 63syl3anc 1228 . . . . . 6  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  -> DECID  y  =  A )
65 exmiddc 826 . . . . . 6  |-  (DECID  y  =  A  ->  ( y  =  A  \/  -.  y  =  A )
)
6664, 65syl 14 . . . . 5  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  -> 
( y  =  A  \/  -.  y  =  A ) )
6750, 59, 66mpjaodan 788 . . . 4  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  ->  if ( y  =  A ,  B ,  y )  e.  ( X 
\  { A }
) )
6812adantl 275 . . . . . . . . . 10  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  if (
x  =  B ,  A ,  x )  =  A )
6968eqeq2d 2177 . . . . . . . . 9  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  if ( x  =  B ,  A ,  x )  <->  y  =  A ) )
7069biimpar 295 . . . . . . . 8  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  y  =  A )  ->  y  =  if ( x  =  B ,  A ,  x ) )
7170a1d 22 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  y  =  A )  ->  (
x  =  if ( y  =  A ,  B ,  y )  ->  y  =  if ( x  =  B ,  A ,  x )
) )
72 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  x  =  if ( y  =  A ,  B , 
y ) )
7351eqeq2d 2177 . . . . . . . . . . . 12  |-  ( -.  y  =  A  -> 
( x  =  if ( y  =  A ,  B ,  y )  <->  x  =  y
) )
7473ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  (
x  =  if ( y  =  A ,  B ,  y )  <->  x  =  y ) )
7572, 74mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  x  =  y )
76 simpllr 524 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  x  =  B )
7775, 76eqtr3d 2200 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  y  =  B )
78 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  y  e.  ( X  \  { B } ) )
7978ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  ->  y  e.  ( X 
\  { B }
) )
8079eldifbd 3128 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  ->  -.  y  e.  { B } )
8180adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  -.  y  e.  { B } )
82 velsn 3593 . . . . . . . . . 10  |-  ( y  e.  { B }  <->  y  =  B )
8381, 82sylnib 666 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  -.  y  =  B )
8477, 83pm2.21dd 610 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  y  =  if ( x  =  B ,  A ,  x ) )
8584ex 114 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  ->  ( x  =  if ( y  =  A ,  B ,  y )  ->  y  =  if ( x  =  B ,  A ,  x
) ) )
86 simpll1 1026 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  X  e.  Fin )
8753ad2antll 483 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  y  e.  X
)
88 simpll2 1027 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  A  e.  X
)
8986, 87, 88, 63syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  -> DECID 
y  =  A )
9089, 65syl 14 . . . . . . . 8  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  ( y  =  A  \/  -.  y  =  A ) )
9190adantr 274 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  A  \/  -.  y  =  A )
)
9271, 85, 91mpjaodan 788 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( x  =  if ( y  =  A ,  B , 
y )  ->  y  =  if ( x  =  B ,  A ,  x ) ) )
9341eqeq2d 2177 . . . . . . . . 9  |-  ( y  =  A  ->  (
x  =  if ( y  =  A ,  B ,  y )  <->  x  =  B ) )
9493biimprcd 159 . . . . . . . 8  |-  ( x  =  B  ->  (
y  =  A  ->  x  =  if (
y  =  A ,  B ,  y )
) )
9594adantl 275 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  A  ->  x  =  if ( y  =  A ,  B , 
y ) ) )
9669, 95sylbid 149 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  if ( x  =  B ,  A ,  x )  ->  x  =  if ( y  =  A ,  B , 
y ) ) )
9792, 96impbid 128 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( x  =  if ( y  =  A ,  B , 
y )  <->  y  =  if ( x  =  B ,  A ,  x
) ) )
98 simplr 520 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  x  =  if ( y  =  A ,  B , 
y ) )
9941adantl 275 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  if ( y  =  A ,  B ,  y )  =  B )
10098, 99eqtrd 2198 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  x  =  B )
101 simpllr 524 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  -.  x  =  B )
102100, 101pm2.21dd 610 . . . . . . 7  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  y  =  if ( x  =  B ,  A ,  x ) )
10323ad3antlr 485 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  if ( x  =  B ,  A ,  x )  =  x )
104 simplr 520 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  x  =  if ( y  =  A ,  B ,  y )
)
10551adantl 275 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  if ( y  =  A ,  B , 
y )  =  y )
106104, 105eqtrd 2198 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  x  =  y )
107103, 106eqtr2d 2199 . . . . . . 7  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  y  =  if ( x  =  B ,  A ,  x )
)
10890ad2antrr 480 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  (
y  =  A  \/  -.  y  =  A
) )
109102, 107, 108mpjaodan 788 . . . . . 6  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  y  =  if ( x  =  B ,  A ,  x ) )
110 simprl 521 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  x  e.  ( X  \  { A } ) )
111110eldifbd 3128 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  -.  x  e.  { A } )
112 velsn 3593 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
113111, 112sylnib 666 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  -.  x  =  A )
114113ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  -.  x  =  A )
115 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  y  =  if ( x  =  B ,  A ,  x
) )
11623eqeq2d 2177 . . . . . . . . . . . 12  |-  ( -.  x  =  B  -> 
( y  =  if ( x  =  B ,  A ,  x
)  <->  y  =  x ) )
117116ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  ( y  =  if ( x  =  B ,  A ,  x )  <->  y  =  x ) )
118115, 117mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  y  =  x )
119118eqeq1d 2174 . . . . . . . . 9  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  ( y  =  A  <->  x  =  A
) )
120114, 119mtbird 663 . . . . . . . 8  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  -.  y  =  A )
121120, 51syl 14 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  if (
y  =  A ,  B ,  y )  =  y )
122121, 118eqtr2d 2199 . . . . . 6  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  x  =  if ( y  =  A ,  B ,  y ) )
123109, 122impbida 586 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  ->  (
x  =  if ( y  =  A ,  B ,  y )  <->  y  =  if ( x  =  B ,  A ,  x ) ) )
12439adantrr 471 . . . . 5  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  ( x  =  B  \/  -.  x  =  B ) )
12597, 123, 124mpjaodan 788 . . . 4  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  ( x  =  if ( y  =  A ,  B , 
y )  <->  y  =  if ( x  =  B ,  A ,  x
) ) )
12611, 40, 67, 125f1o2d 6043 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  ( x  e.  ( X  \  { A } )  |->  if ( x  =  B ,  A ,  x )
) : ( X 
\  { A }
)
-1-1-onto-> ( X  \  { B } ) )
127 f1oeng 6723 . . 3  |-  ( ( ( X  \  { A } )  e.  _V  /\  ( x  e.  ( X  \  { A } )  |->  if ( x  =  B ,  A ,  x )
) : ( X 
\  { A }
)
-1-1-onto-> ( X  \  { B } ) )  -> 
( X  \  { A } )  ~~  ( X  \  { B }
) )
12810, 126, 127syl2anc 409 . 2  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  ( X  \  { A } ) 
~~  ( X  \  { B } ) )
129 fidceq 6835 . . 3  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  -> DECID  A  =  B )
130 exmiddc 826 . . 3  |-  (DECID  A  =  B  ->  ( A  =  B  \/  -.  A  =  B )
)
131129, 130syl 14 . 2  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( A  =  B  \/  -.  A  =  B ) )
1329, 128, 131mpjaodan 788 1  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   _Vcvv 2726    \ cdif 3113   ifcif 3520   {csn 3576   class class class wbr 3982    |-> cmpt 4043   -1-1-onto->wf1o 5187    ~~ cen 6704   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-en 6707  df-fin 6709
This theorem is referenced by:  dif1en  6845
  Copyright terms: Public domain W3C validator