| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fidifsnen | Unicode version | ||
| Description: All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| fidifsnen | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difexg 4174 | 
. . . . . 6
 | |
| 2 | 1 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 3 | 2 | adantr 276 | 
. . . 4
 | 
| 4 | enrefg 6823 | 
. . . 4
 | |
| 5 | 3, 4 | syl 14 | 
. . 3
 | 
| 6 | sneq 3633 | 
. . . . 5
 | |
| 7 | 6 | difeq2d 3281 | 
. . . 4
 | 
| 8 | 7 | adantl 277 | 
. . 3
 | 
| 9 | 5, 8 | breqtrd 4059 | 
. 2
 | 
| 10 | 2 | adantr 276 | 
. . 3
 | 
| 11 | eqid 2196 | 
. . . 4
 | |
| 12 | iftrue 3566 | 
. . . . . . . 8
 | |
| 13 | 12 | adantl 277 | 
. . . . . . 7
 | 
| 14 | simpll2 1039 | 
. . . . . . . 8
 | |
| 15 | 14 | adantr 276 | 
. . . . . . 7
 | 
| 16 | 13, 15 | eqeltrd 2273 | 
. . . . . 6
 | 
| 17 | simpllr 534 | 
. . . . . . . 8
 | |
| 18 | 13 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 19 | 17, 18 | mtbird 674 | 
. . . . . . 7
 | 
| 20 | 19 | neneqad 2446 | 
. . . . . 6
 | 
| 21 | eldifsn 3749 | 
. . . . . 6
 | |
| 22 | 16, 20, 21 | sylanbrc 417 | 
. . . . 5
 | 
| 23 | iffalse 3569 | 
. . . . . . . 8
 | |
| 24 | 23 | adantl 277 | 
. . . . . . 7
 | 
| 25 | eldifi 3285 | 
. . . . . . . 8
 | |
| 26 | 25 | ad2antlr 489 | 
. . . . . . 7
 | 
| 27 | 24, 26 | eqeltrd 2273 | 
. . . . . 6
 | 
| 28 | simpr 110 | 
. . . . . . . 8
 | |
| 29 | 24 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 30 | 28, 29 | mtbird 674 | 
. . . . . . 7
 | 
| 31 | 30 | neneqad 2446 | 
. . . . . 6
 | 
| 32 | 27, 31, 21 | sylanbrc 417 | 
. . . . 5
 | 
| 33 | simpll1 1038 | 
. . . . . . 7
 | |
| 34 | 25 | adantl 277 | 
. . . . . . 7
 | 
| 35 | simpll3 1040 | 
. . . . . . 7
 | |
| 36 | fidceq 6930 | 
. . . . . . 7
 | |
| 37 | 33, 34, 35, 36 | syl3anc 1249 | 
. . . . . 6
 | 
| 38 | exmiddc 837 | 
. . . . . 6
 | |
| 39 | 37, 38 | syl 14 | 
. . . . 5
 | 
| 40 | 22, 32, 39 | mpjaodan 799 | 
. . . 4
 | 
| 41 | iftrue 3566 | 
. . . . . . 7
 | |
| 42 | 41 | adantl 277 | 
. . . . . 6
 | 
| 43 | simpl3 1004 | 
. . . . . . . 8
 | |
| 44 | simpr 110 | 
. . . . . . . . . 10
 | |
| 45 | 44 | neneqad 2446 | 
. . . . . . . . 9
 | 
| 46 | 45 | necomd 2453 | 
. . . . . . . 8
 | 
| 47 | eldifsn 3749 | 
. . . . . . . 8
 | |
| 48 | 43, 46, 47 | sylanbrc 417 | 
. . . . . . 7
 | 
| 49 | 48 | ad2antrr 488 | 
. . . . . 6
 | 
| 50 | 42, 49 | eqeltrd 2273 | 
. . . . 5
 | 
| 51 | iffalse 3569 | 
. . . . . . 7
 | |
| 52 | 51 | adantl 277 | 
. . . . . 6
 | 
| 53 | eldifi 3285 | 
. . . . . . . 8
 | |
| 54 | 53 | ad2antlr 489 | 
. . . . . . 7
 | 
| 55 | simpr 110 | 
. . . . . . . 8
 | |
| 56 | 55 | neneqad 2446 | 
. . . . . . 7
 | 
| 57 | eldifsn 3749 | 
. . . . . . 7
 | |
| 58 | 54, 56, 57 | sylanbrc 417 | 
. . . . . 6
 | 
| 59 | 52, 58 | eqeltrd 2273 | 
. . . . 5
 | 
| 60 | simpll1 1038 | 
. . . . . . 7
 | |
| 61 | 53 | adantl 277 | 
. . . . . . 7
 | 
| 62 | simpll2 1039 | 
. . . . . . 7
 | |
| 63 | fidceq 6930 | 
. . . . . . 7
 | |
| 64 | 60, 61, 62, 63 | syl3anc 1249 | 
. . . . . 6
 | 
| 65 | exmiddc 837 | 
. . . . . 6
 | |
| 66 | 64, 65 | syl 14 | 
. . . . 5
 | 
| 67 | 50, 59, 66 | mpjaodan 799 | 
. . . 4
 | 
| 68 | 12 | adantl 277 | 
. . . . . . . . . 10
 | 
| 69 | 68 | eqeq2d 2208 | 
. . . . . . . . 9
 | 
| 70 | 69 | biimpar 297 | 
. . . . . . . 8
 | 
| 71 | 70 | a1d 22 | 
. . . . . . 7
 | 
| 72 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 73 | 51 | eqeq2d 2208 | 
. . . . . . . . . . . 12
 | 
| 74 | 73 | ad2antlr 489 | 
. . . . . . . . . . 11
 | 
| 75 | 72, 74 | mpbid 147 | 
. . . . . . . . . 10
 | 
| 76 | simpllr 534 | 
. . . . . . . . . 10
 | |
| 77 | 75, 76 | eqtr3d 2231 | 
. . . . . . . . 9
 | 
| 78 | simprr 531 | 
. . . . . . . . . . . . 13
 | |
| 79 | 78 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 80 | 79 | eldifbd 3169 | 
. . . . . . . . . . 11
 | 
| 81 | 80 | adantr 276 | 
. . . . . . . . . 10
 | 
| 82 | velsn 3639 | 
. . . . . . . . . 10
 | |
| 83 | 81, 82 | sylnib 677 | 
. . . . . . . . 9
 | 
| 84 | 77, 83 | pm2.21dd 621 | 
. . . . . . . 8
 | 
| 85 | 84 | ex 115 | 
. . . . . . 7
 | 
| 86 | simpll1 1038 | 
. . . . . . . . . 10
 | |
| 87 | 53 | ad2antll 491 | 
. . . . . . . . . 10
 | 
| 88 | simpll2 1039 | 
. . . . . . . . . 10
 | |
| 89 | 86, 87, 88, 63 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 90 | 89, 65 | syl 14 | 
. . . . . . . 8
 | 
| 91 | 90 | adantr 276 | 
. . . . . . 7
 | 
| 92 | 71, 85, 91 | mpjaodan 799 | 
. . . . . 6
 | 
| 93 | 41 | eqeq2d 2208 | 
. . . . . . . . 9
 | 
| 94 | 93 | biimprcd 160 | 
. . . . . . . 8
 | 
| 95 | 94 | adantl 277 | 
. . . . . . 7
 | 
| 96 | 69, 95 | sylbid 150 | 
. . . . . 6
 | 
| 97 | 92, 96 | impbid 129 | 
. . . . 5
 | 
| 98 | simplr 528 | 
. . . . . . . . 9
 | |
| 99 | 41 | adantl 277 | 
. . . . . . . . 9
 | 
| 100 | 98, 99 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 101 | simpllr 534 | 
. . . . . . . 8
 | |
| 102 | 100, 101 | pm2.21dd 621 | 
. . . . . . 7
 | 
| 103 | 23 | ad3antlr 493 | 
. . . . . . . 8
 | 
| 104 | simplr 528 | 
. . . . . . . . 9
 | |
| 105 | 51 | adantl 277 | 
. . . . . . . . 9
 | 
| 106 | 104, 105 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 107 | 103, 106 | eqtr2d 2230 | 
. . . . . . 7
 | 
| 108 | 90 | ad2antrr 488 | 
. . . . . . 7
 | 
| 109 | 102, 107, 108 | mpjaodan 799 | 
. . . . . 6
 | 
| 110 | simprl 529 | 
. . . . . . . . . . . 12
 | |
| 111 | 110 | eldifbd 3169 | 
. . . . . . . . . . 11
 | 
| 112 | velsn 3639 | 
. . . . . . . . . . 11
 | |
| 113 | 111, 112 | sylnib 677 | 
. . . . . . . . . 10
 | 
| 114 | 113 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 115 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 116 | 23 | eqeq2d 2208 | 
. . . . . . . . . . . 12
 | 
| 117 | 116 | ad2antlr 489 | 
. . . . . . . . . . 11
 | 
| 118 | 115, 117 | mpbid 147 | 
. . . . . . . . . 10
 | 
| 119 | 118 | eqeq1d 2205 | 
. . . . . . . . 9
 | 
| 120 | 114, 119 | mtbird 674 | 
. . . . . . . 8
 | 
| 121 | 120, 51 | syl 14 | 
. . . . . . 7
 | 
| 122 | 121, 118 | eqtr2d 2230 | 
. . . . . 6
 | 
| 123 | 109, 122 | impbida 596 | 
. . . . 5
 | 
| 124 | 39 | adantrr 479 | 
. . . . 5
 | 
| 125 | 97, 123, 124 | mpjaodan 799 | 
. . . 4
 | 
| 126 | 11, 40, 67, 125 | f1o2d 6128 | 
. . 3
 | 
| 127 | f1oeng 6816 | 
. . 3
 | |
| 128 | 10, 126, 127 | syl2anc 411 | 
. 2
 | 
| 129 | fidceq 6930 | 
. . 3
 | |
| 130 | exmiddc 837 | 
. . 3
 | |
| 131 | 129, 130 | syl 14 | 
. 2
 | 
| 132 | 9, 128, 131 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: dif1en 6940 | 
| Copyright terms: Public domain | W3C validator |