Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidifsnen | Unicode version |
Description: All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.) |
Ref | Expression |
---|---|
fidifsnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 4123 | . . . . . 6 | |
2 | 1 | 3ad2ant1 1008 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | enrefg 6730 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | sneq 3587 | . . . . 5 | |
7 | 6 | difeq2d 3240 | . . . 4 |
8 | 7 | adantl 275 | . . 3 |
9 | 5, 8 | breqtrd 4008 | . 2 |
10 | 2 | adantr 274 | . . 3 |
11 | eqid 2165 | . . . 4 | |
12 | iftrue 3525 | . . . . . . . 8 | |
13 | 12 | adantl 275 | . . . . . . 7 |
14 | simpll2 1027 | . . . . . . . 8 | |
15 | 14 | adantr 274 | . . . . . . 7 |
16 | 13, 15 | eqeltrd 2243 | . . . . . 6 |
17 | simpllr 524 | . . . . . . . 8 | |
18 | 13 | eqeq1d 2174 | . . . . . . . 8 |
19 | 17, 18 | mtbird 663 | . . . . . . 7 |
20 | 19 | neneqad 2415 | . . . . . 6 |
21 | eldifsn 3703 | . . . . . 6 | |
22 | 16, 20, 21 | sylanbrc 414 | . . . . 5 |
23 | iffalse 3528 | . . . . . . . 8 | |
24 | 23 | adantl 275 | . . . . . . 7 |
25 | eldifi 3244 | . . . . . . . 8 | |
26 | 25 | ad2antlr 481 | . . . . . . 7 |
27 | 24, 26 | eqeltrd 2243 | . . . . . 6 |
28 | simpr 109 | . . . . . . . 8 | |
29 | 24 | eqeq1d 2174 | . . . . . . . 8 |
30 | 28, 29 | mtbird 663 | . . . . . . 7 |
31 | 30 | neneqad 2415 | . . . . . 6 |
32 | 27, 31, 21 | sylanbrc 414 | . . . . 5 |
33 | simpll1 1026 | . . . . . . 7 | |
34 | 25 | adantl 275 | . . . . . . 7 |
35 | simpll3 1028 | . . . . . . 7 | |
36 | fidceq 6835 | . . . . . . 7 DECID | |
37 | 33, 34, 35, 36 | syl3anc 1228 | . . . . . 6 DECID |
38 | exmiddc 826 | . . . . . 6 DECID | |
39 | 37, 38 | syl 14 | . . . . 5 |
40 | 22, 32, 39 | mpjaodan 788 | . . . 4 |
41 | iftrue 3525 | . . . . . . 7 | |
42 | 41 | adantl 275 | . . . . . 6 |
43 | simpl3 992 | . . . . . . . 8 | |
44 | simpr 109 | . . . . . . . . . 10 | |
45 | 44 | neneqad 2415 | . . . . . . . . 9 |
46 | 45 | necomd 2422 | . . . . . . . 8 |
47 | eldifsn 3703 | . . . . . . . 8 | |
48 | 43, 46, 47 | sylanbrc 414 | . . . . . . 7 |
49 | 48 | ad2antrr 480 | . . . . . 6 |
50 | 42, 49 | eqeltrd 2243 | . . . . 5 |
51 | iffalse 3528 | . . . . . . 7 | |
52 | 51 | adantl 275 | . . . . . 6 |
53 | eldifi 3244 | . . . . . . . 8 | |
54 | 53 | ad2antlr 481 | . . . . . . 7 |
55 | simpr 109 | . . . . . . . 8 | |
56 | 55 | neneqad 2415 | . . . . . . 7 |
57 | eldifsn 3703 | . . . . . . 7 | |
58 | 54, 56, 57 | sylanbrc 414 | . . . . . 6 |
59 | 52, 58 | eqeltrd 2243 | . . . . 5 |
60 | simpll1 1026 | . . . . . . 7 | |
61 | 53 | adantl 275 | . . . . . . 7 |
62 | simpll2 1027 | . . . . . . 7 | |
63 | fidceq 6835 | . . . . . . 7 DECID | |
64 | 60, 61, 62, 63 | syl3anc 1228 | . . . . . 6 DECID |
65 | exmiddc 826 | . . . . . 6 DECID | |
66 | 64, 65 | syl 14 | . . . . 5 |
67 | 50, 59, 66 | mpjaodan 788 | . . . 4 |
68 | 12 | adantl 275 | . . . . . . . . . 10 |
69 | 68 | eqeq2d 2177 | . . . . . . . . 9 |
70 | 69 | biimpar 295 | . . . . . . . 8 |
71 | 70 | a1d 22 | . . . . . . 7 |
72 | simpr 109 | . . . . . . . . . . 11 | |
73 | 51 | eqeq2d 2177 | . . . . . . . . . . . 12 |
74 | 73 | ad2antlr 481 | . . . . . . . . . . 11 |
75 | 72, 74 | mpbid 146 | . . . . . . . . . 10 |
76 | simpllr 524 | . . . . . . . . . 10 | |
77 | 75, 76 | eqtr3d 2200 | . . . . . . . . 9 |
78 | simprr 522 | . . . . . . . . . . . . 13 | |
79 | 78 | ad2antrr 480 | . . . . . . . . . . . 12 |
80 | 79 | eldifbd 3128 | . . . . . . . . . . 11 |
81 | 80 | adantr 274 | . . . . . . . . . 10 |
82 | velsn 3593 | . . . . . . . . . 10 | |
83 | 81, 82 | sylnib 666 | . . . . . . . . 9 |
84 | 77, 83 | pm2.21dd 610 | . . . . . . . 8 |
85 | 84 | ex 114 | . . . . . . 7 |
86 | simpll1 1026 | . . . . . . . . . 10 | |
87 | 53 | ad2antll 483 | . . . . . . . . . 10 |
88 | simpll2 1027 | . . . . . . . . . 10 | |
89 | 86, 87, 88, 63 | syl3anc 1228 | . . . . . . . . 9 DECID |
90 | 89, 65 | syl 14 | . . . . . . . 8 |
91 | 90 | adantr 274 | . . . . . . 7 |
92 | 71, 85, 91 | mpjaodan 788 | . . . . . 6 |
93 | 41 | eqeq2d 2177 | . . . . . . . . 9 |
94 | 93 | biimprcd 159 | . . . . . . . 8 |
95 | 94 | adantl 275 | . . . . . . 7 |
96 | 69, 95 | sylbid 149 | . . . . . 6 |
97 | 92, 96 | impbid 128 | . . . . 5 |
98 | simplr 520 | . . . . . . . . 9 | |
99 | 41 | adantl 275 | . . . . . . . . 9 |
100 | 98, 99 | eqtrd 2198 | . . . . . . . 8 |
101 | simpllr 524 | . . . . . . . 8 | |
102 | 100, 101 | pm2.21dd 610 | . . . . . . 7 |
103 | 23 | ad3antlr 485 | . . . . . . . 8 |
104 | simplr 520 | . . . . . . . . 9 | |
105 | 51 | adantl 275 | . . . . . . . . 9 |
106 | 104, 105 | eqtrd 2198 | . . . . . . . 8 |
107 | 103, 106 | eqtr2d 2199 | . . . . . . 7 |
108 | 90 | ad2antrr 480 | . . . . . . 7 |
109 | 102, 107, 108 | mpjaodan 788 | . . . . . 6 |
110 | simprl 521 | . . . . . . . . . . . 12 | |
111 | 110 | eldifbd 3128 | . . . . . . . . . . 11 |
112 | velsn 3593 | . . . . . . . . . . 11 | |
113 | 111, 112 | sylnib 666 | . . . . . . . . . 10 |
114 | 113 | ad2antrr 480 | . . . . . . . . 9 |
115 | simpr 109 | . . . . . . . . . . 11 | |
116 | 23 | eqeq2d 2177 | . . . . . . . . . . . 12 |
117 | 116 | ad2antlr 481 | . . . . . . . . . . 11 |
118 | 115, 117 | mpbid 146 | . . . . . . . . . 10 |
119 | 118 | eqeq1d 2174 | . . . . . . . . 9 |
120 | 114, 119 | mtbird 663 | . . . . . . . 8 |
121 | 120, 51 | syl 14 | . . . . . . 7 |
122 | 121, 118 | eqtr2d 2199 | . . . . . 6 |
123 | 109, 122 | impbida 586 | . . . . 5 |
124 | 39 | adantrr 471 | . . . . 5 |
125 | 97, 123, 124 | mpjaodan 788 | . . . 4 |
126 | 11, 40, 67, 125 | f1o2d 6043 | . . 3 |
127 | f1oeng 6723 | . . 3 | |
128 | 10, 126, 127 | syl2anc 409 | . 2 |
129 | fidceq 6835 | . . 3 DECID | |
130 | exmiddc 826 | . . 3 DECID | |
131 | 129, 130 | syl 14 | . 2 |
132 | 9, 128, 131 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 wne 2336 cvv 2726 cdif 3113 cif 3520 csn 3576 class class class wbr 3982 cmpt 4043 wf1o 5187 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-en 6707 df-fin 6709 |
This theorem is referenced by: dif1en 6845 |
Copyright terms: Public domain | W3C validator |