ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidifsnen Unicode version

Theorem fidifsnen 6926
Description: All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
Assertion
Ref Expression
fidifsnen  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )

Proof of Theorem fidifsnen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 4170 . . . . . 6  |-  ( X  e.  Fin  ->  ( X  \  { A }
)  e.  _V )
213ad2ant1 1020 . . . . 5  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  e.  _V )
32adantr 276 . . . 4  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } )  e.  _V )
4 enrefg 6818 . . . 4  |-  ( ( X  \  { A } )  e.  _V  ->  ( X  \  { A } )  ~~  ( X  \  { A }
) )
53, 4syl 14 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } ) 
~~  ( X  \  { A } ) )
6 sneq 3629 . . . . 5  |-  ( A  =  B  ->  { A }  =  { B } )
76difeq2d 3277 . . . 4  |-  ( A  =  B  ->  ( X  \  { A }
)  =  ( X 
\  { B }
) )
87adantl 277 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } )  =  ( X  \  { B } ) )
95, 8breqtrd 4055 . 2  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  A  =  B
)  ->  ( X  \  { A } ) 
~~  ( X  \  { B } ) )
102adantr 276 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  ( X  \  { A } )  e.  _V )
11 eqid 2193 . . . 4  |-  ( x  e.  ( X  \  { A } )  |->  if ( x  =  B ,  A ,  x
) )  =  ( x  e.  ( X 
\  { A }
)  |->  if ( x  =  B ,  A ,  x ) )
12 iftrue 3562 . . . . . . . 8  |-  ( x  =  B  ->  if ( x  =  B ,  A ,  x )  =  A )
1312adantl 277 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =  A )
14 simpll2 1039 . . . . . . . 8  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  A  e.  X )
1514adantr 276 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  A  e.  X )
1613, 15eqeltrd 2270 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  X )
17 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  -.  A  =  B )
1813eqeq1d 2202 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  ( if ( x  =  B ,  A ,  x
)  =  B  <->  A  =  B ) )
1917, 18mtbird 674 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  -.  if ( x  =  B ,  A ,  x
)  =  B )
2019neneqad 2443 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =/=  B )
21 eldifsn 3745 . . . . . 6  |-  ( if ( x  =  B ,  A ,  x
)  e.  ( X 
\  { B }
)  <->  ( if ( x  =  B ,  A ,  x )  e.  X  /\  if ( x  =  B ,  A ,  x )  =/=  B ) )
2216, 20, 21sylanbrc 417 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  ( X  \  { B } ) )
23 iffalse 3565 . . . . . . . 8  |-  ( -.  x  =  B  ->  if ( x  =  B ,  A ,  x
)  =  x )
2423adantl 277 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =  x )
25 eldifi 3281 . . . . . . . 8  |-  ( x  e.  ( X  \  { A } )  ->  x  e.  X )
2625ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  x  e.  X )
2724, 26eqeltrd 2270 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  X
)
28 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  -.  x  =  B )
2924eqeq1d 2202 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  ( if ( x  =  B ,  A ,  x )  =  B  <-> 
x  =  B ) )
3028, 29mtbird 674 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  -.  if ( x  =  B ,  A ,  x )  =  B )
3130neneqad 2443 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  =/=  B
)
3227, 31, 21sylanbrc 417 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A }
) )  /\  -.  x  =  B )  ->  if ( x  =  B ,  A ,  x )  e.  ( X  \  { B } ) )
33 simpll1 1038 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  X  e.  Fin )
3425adantl 277 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  x  e.  X )
35 simpll3 1040 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  B  e.  X )
36 fidceq 6925 . . . . . . 7  |-  ( ( X  e.  Fin  /\  x  e.  X  /\  B  e.  X )  -> DECID  x  =  B )
3733, 34, 35, 36syl3anc 1249 . . . . . 6  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  -> DECID  x  =  B )
38 exmiddc 837 . . . . . 6  |-  (DECID  x  =  B  ->  ( x  =  B  \/  -.  x  =  B )
)
3937, 38syl 14 . . . . 5  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  -> 
( x  =  B  \/  -.  x  =  B ) )
4022, 32, 39mpjaodan 799 . . . 4  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  x  e.  ( X  \  { A } ) )  ->  if ( x  =  B ,  A ,  x
)  e.  ( X 
\  { B }
) )
41 iftrue 3562 . . . . . . 7  |-  ( y  =  A  ->  if ( y  =  A ,  B ,  y )  =  B )
4241adantl 277 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  y  =  A )  ->  if ( y  =  A ,  B ,  y )  =  B )
43 simpl3 1004 . . . . . . . 8  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  B  e.  X )
44 simpr 110 . . . . . . . . . 10  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  -.  A  =  B )
4544neneqad 2443 . . . . . . . . 9  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  A  =/=  B )
4645necomd 2450 . . . . . . . 8  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  B  =/=  A )
47 eldifsn 3745 . . . . . . . 8  |-  ( B  e.  ( X  \  { A } )  <->  ( B  e.  X  /\  B  =/= 
A ) )
4843, 46, 47sylanbrc 417 . . . . . . 7  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  B  e.  ( X  \  { A } ) )
4948ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  y  =  A )  ->  B  e.  ( X  \  { A } ) )
5042, 49eqeltrd 2270 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  y  =  A )  ->  if ( y  =  A ,  B ,  y )  e.  ( X 
\  { A }
) )
51 iffalse 3565 . . . . . . 7  |-  ( -.  y  =  A  ->  if ( y  =  A ,  B ,  y )  =  y )
5251adantl 277 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  if ( y  =  A ,  B , 
y )  =  y )
53 eldifi 3281 . . . . . . . 8  |-  ( y  e.  ( X  \  { B } )  -> 
y  e.  X )
5453ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  y  e.  X )
55 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  -.  y  =  A )
5655neneqad 2443 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  y  =/=  A )
57 eldifsn 3745 . . . . . . 7  |-  ( y  e.  ( X  \  { A } )  <->  ( y  e.  X  /\  y  =/=  A ) )
5854, 56, 57sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  y  e.  ( X 
\  { A }
) )
5952, 58eqeltrd 2270 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B }
) )  /\  -.  y  =  A )  ->  if ( y  =  A ,  B , 
y )  e.  ( X  \  { A } ) )
60 simpll1 1038 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  ->  X  e.  Fin )
6153adantl 277 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  -> 
y  e.  X )
62 simpll2 1039 . . . . . . 7  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  ->  A  e.  X )
63 fidceq 6925 . . . . . . 7  |-  ( ( X  e.  Fin  /\  y  e.  X  /\  A  e.  X )  -> DECID  y  =  A )
6460, 61, 62, 63syl3anc 1249 . . . . . 6  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  -> DECID  y  =  A )
65 exmiddc 837 . . . . . 6  |-  (DECID  y  =  A  ->  ( y  =  A  \/  -.  y  =  A )
)
6664, 65syl 14 . . . . 5  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  -> 
( y  =  A  \/  -.  y  =  A ) )
6750, 59, 66mpjaodan 799 . . . 4  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  y  e.  ( X  \  { B } ) )  ->  if ( y  =  A ,  B ,  y )  e.  ( X 
\  { A }
) )
6812adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  if (
x  =  B ,  A ,  x )  =  A )
6968eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  if ( x  =  B ,  A ,  x )  <->  y  =  A ) )
7069biimpar 297 . . . . . . . 8  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  y  =  A )  ->  y  =  if ( x  =  B ,  A ,  x ) )
7170a1d 22 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  y  =  A )  ->  (
x  =  if ( y  =  A ,  B ,  y )  ->  y  =  if ( x  =  B ,  A ,  x )
) )
72 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  x  =  if ( y  =  A ,  B , 
y ) )
7351eqeq2d 2205 . . . . . . . . . . . 12  |-  ( -.  y  =  A  -> 
( x  =  if ( y  =  A ,  B ,  y )  <->  x  =  y
) )
7473ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  (
x  =  if ( y  =  A ,  B ,  y )  <->  x  =  y ) )
7572, 74mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  x  =  y )
76 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  x  =  B )
7775, 76eqtr3d 2228 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  y  =  B )
78 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  y  e.  ( X  \  { B } ) )
7978ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  ->  y  e.  ( X 
\  { B }
) )
8079eldifbd 3165 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  ->  -.  y  e.  { B } )
8180adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  -.  y  e.  { B } )
82 velsn 3635 . . . . . . . . . 10  |-  ( y  e.  { B }  <->  y  =  B )
8381, 82sylnib 677 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  -.  y  =  B )
8477, 83pm2.21dd 621 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  y  =  if ( x  =  B ,  A ,  x ) )
8584ex 115 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  /\  -.  y  =  A )  ->  ( x  =  if ( y  =  A ,  B ,  y )  ->  y  =  if ( x  =  B ,  A ,  x
) ) )
86 simpll1 1038 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  X  e.  Fin )
8753ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  y  e.  X
)
88 simpll2 1039 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  A  e.  X
)
8986, 87, 88, 63syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  -> DECID 
y  =  A )
9089, 65syl 14 . . . . . . . 8  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  ( y  =  A  \/  -.  y  =  A ) )
9190adantr 276 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  A  \/  -.  y  =  A )
)
9271, 85, 91mpjaodan 799 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( x  =  if ( y  =  A ,  B , 
y )  ->  y  =  if ( x  =  B ,  A ,  x ) ) )
9341eqeq2d 2205 . . . . . . . . 9  |-  ( y  =  A  ->  (
x  =  if ( y  =  A ,  B ,  y )  <->  x  =  B ) )
9493biimprcd 160 . . . . . . . 8  |-  ( x  =  B  ->  (
y  =  A  ->  x  =  if (
y  =  A ,  B ,  y )
) )
9594adantl 277 . . . . . . 7  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  A  ->  x  =  if ( y  =  A ,  B , 
y ) ) )
9669, 95sylbid 150 . . . . . 6  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( y  =  if ( x  =  B ,  A ,  x )  ->  x  =  if ( y  =  A ,  B , 
y ) ) )
9792, 96impbid 129 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  x  =  B )  ->  ( x  =  if ( y  =  A ,  B , 
y )  <->  y  =  if ( x  =  B ,  A ,  x
) ) )
98 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  x  =  if ( y  =  A ,  B , 
y ) )
9941adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  if ( y  =  A ,  B ,  y )  =  B )
10098, 99eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  x  =  B )
101 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  -.  x  =  B )
102100, 101pm2.21dd 621 . . . . . . 7  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  y  =  A )  ->  y  =  if ( x  =  B ,  A ,  x ) )
10323ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  if ( x  =  B ,  A ,  x )  =  x )
104 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  x  =  if ( y  =  A ,  B ,  y )
)
10551adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  if ( y  =  A ,  B , 
y )  =  y )
106104, 105eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  x  =  y )
107103, 106eqtr2d 2227 . . . . . . 7  |-  ( ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  /\  -.  y  =  A )  ->  y  =  if ( x  =  B ,  A ,  x )
)
10890ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  (
y  =  A  \/  -.  y  =  A
) )
109102, 107, 108mpjaodan 799 . . . . . 6  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  x  =  if ( y  =  A ,  B ,  y ) )  ->  y  =  if ( x  =  B ,  A ,  x ) )
110 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  x  e.  ( X  \  { A } ) )
111110eldifbd 3165 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  -.  x  e.  { A } )
112 velsn 3635 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
113111, 112sylnib 677 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  -.  x  =  A )
114113ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  -.  x  =  A )
115 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  y  =  if ( x  =  B ,  A ,  x
) )
11623eqeq2d 2205 . . . . . . . . . . . 12  |-  ( -.  x  =  B  -> 
( y  =  if ( x  =  B ,  A ,  x
)  <->  y  =  x ) )
117116ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  ( y  =  if ( x  =  B ,  A ,  x )  <->  y  =  x ) )
118115, 117mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  y  =  x )
119118eqeq1d 2202 . . . . . . . . 9  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  ( y  =  A  <->  x  =  A
) )
120114, 119mtbird 674 . . . . . . . 8  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  -.  y  =  A )
121120, 51syl 14 . . . . . . 7  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  if (
y  =  A ,  B ,  y )  =  y )
122121, 118eqtr2d 2227 . . . . . 6  |-  ( ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  /\  y  =  if ( x  =  B ,  A ,  x ) )  ->  x  =  if ( y  =  A ,  B ,  y ) )
123109, 122impbida 596 . . . . 5  |-  ( ( ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  /\  ( x  e.  ( X  \  { A } )  /\  y  e.  ( X  \  { B } ) ) )  /\  -.  x  =  B )  ->  (
x  =  if ( y  =  A ,  B ,  y )  <->  y  =  if ( x  =  B ,  A ,  x ) ) )
12439adantrr 479 . . . . 5  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  ( x  =  B  \/  -.  x  =  B ) )
12597, 123, 124mpjaodan 799 . . . 4  |-  ( ( ( ( X  e. 
Fin  /\  A  e.  X  /\  B  e.  X
)  /\  -.  A  =  B )  /\  (
x  e.  ( X 
\  { A }
)  /\  y  e.  ( X  \  { B } ) ) )  ->  ( x  =  if ( y  =  A ,  B , 
y )  <->  y  =  if ( x  =  B ,  A ,  x
) ) )
12611, 40, 67, 125f1o2d 6123 . . 3  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  ( x  e.  ( X  \  { A } )  |->  if ( x  =  B ,  A ,  x )
) : ( X 
\  { A }
)
-1-1-onto-> ( X  \  { B } ) )
127 f1oeng 6811 . . 3  |-  ( ( ( X  \  { A } )  e.  _V  /\  ( x  e.  ( X  \  { A } )  |->  if ( x  =  B ,  A ,  x )
) : ( X 
\  { A }
)
-1-1-onto-> ( X  \  { B } ) )  -> 
( X  \  { A } )  ~~  ( X  \  { B }
) )
12810, 126, 127syl2anc 411 . 2  |-  ( ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  /\  -.  A  =  B )  ->  ( X  \  { A } ) 
~~  ( X  \  { B } ) )
129 fidceq 6925 . . 3  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  -> DECID  A  =  B )
130 exmiddc 837 . . 3  |-  (DECID  A  =  B  ->  ( A  =  B  \/  -.  A  =  B )
)
131129, 130syl 14 . 2  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( A  =  B  \/  -.  A  =  B ) )
1329, 128, 131mpjaodan 799 1  |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    \ cdif 3150   ifcif 3557   {csn 3618   class class class wbr 4029    |-> cmpt 4090   -1-1-onto->wf1o 5253    ~~ cen 6792   Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-en 6795  df-fin 6797
This theorem is referenced by:  dif1en  6935
  Copyright terms: Public domain W3C validator