ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncld Unicode version

Theorem uncld 11981
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  u.  B )  e.  ( Clsd `  J
) )

Proof of Theorem uncld
StepHypRef Expression
1 difundi 3267 . . 3  |-  ( U. J  \  ( A  u.  B ) )  =  ( ( U. J  \  A )  i^i  ( U. J  \  B ) )
2 cldrcl 11970 . . . . 5  |-  ( A  e.  ( Clsd `  J
)  ->  J  e.  Top )
32adantr 271 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
4 eqid 2095 . . . . . 6  |-  U. J  =  U. J
54cldopn 11975 . . . . 5  |-  ( A  e.  ( Clsd `  J
)  ->  ( U. J  \  A )  e.  J )
65adantr 271 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  A )  e.  J )
74cldopn 11975 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  B )  e.  J )
87adantl 272 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  B )  e.  J )
9 inopn 11870 . . . 4  |-  ( ( J  e.  Top  /\  ( U. J  \  A
)  e.  J  /\  ( U. J  \  B
)  e.  J )  ->  ( ( U. J  \  A )  i^i  ( U. J  \  B ) )  e.  J )
103, 6, 8, 9syl3anc 1181 . . 3  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  (
( U. J  \  A )  i^i  ( U. J  \  B ) )  e.  J )
111, 10syl5eqel 2181 . 2  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  ( A  u.  B )
)  e.  J )
124cldss 11973 . . . . 5  |-  ( A  e.  ( Clsd `  J
)  ->  A  C_  U. J
)
134cldss 11973 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  U. J
)
1412, 13anim12i 332 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  C_  U. J  /\  B  C_  U. J ) )
15 unss 3189 . . . 4  |-  ( ( A  C_  U. J  /\  B  C_  U. J )  <-> 
( A  u.  B
)  C_  U. J )
1614, 15sylib 121 . . 3  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  u.  B )  C_ 
U. J )
174iscld2 11972 . . 3  |-  ( ( J  e.  Top  /\  ( A  u.  B
)  C_  U. J )  ->  ( ( A  u.  B )  e.  ( Clsd `  J
)  <->  ( U. J  \  ( A  u.  B
) )  e.  J
) )
183, 16, 17syl2anc 404 . 2  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  (
( A  u.  B
)  e.  ( Clsd `  J )  <->  ( U. J  \  ( A  u.  B ) )  e.  J ) )
1911, 18mpbird 166 1  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  u.  B )  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1445    \ cdif 3010    u. cun 3011    i^i cin 3012    C_ wss 3013   U.cuni 3675   ` cfv 5049   Topctop 11864   Clsdccld 11960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fn 5052  df-fv 5057  df-top 11865  df-cld 11963
This theorem is referenced by:  iuncld  11983
  Copyright terms: Public domain W3C validator