ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncld Unicode version

Theorem uncld 12753
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  u.  B )  e.  ( Clsd `  J
) )

Proof of Theorem uncld
StepHypRef Expression
1 difundi 3374 . . 3  |-  ( U. J  \  ( A  u.  B ) )  =  ( ( U. J  \  A )  i^i  ( U. J  \  B ) )
2 cldrcl 12742 . . . . 5  |-  ( A  e.  ( Clsd `  J
)  ->  J  e.  Top )
32adantr 274 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
4 eqid 2165 . . . . . 6  |-  U. J  =  U. J
54cldopn 12747 . . . . 5  |-  ( A  e.  ( Clsd `  J
)  ->  ( U. J  \  A )  e.  J )
65adantr 274 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  A )  e.  J )
74cldopn 12747 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  B )  e.  J )
87adantl 275 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  B )  e.  J )
9 inopn 12641 . . . 4  |-  ( ( J  e.  Top  /\  ( U. J  \  A
)  e.  J  /\  ( U. J  \  B
)  e.  J )  ->  ( ( U. J  \  A )  i^i  ( U. J  \  B ) )  e.  J )
103, 6, 8, 9syl3anc 1228 . . 3  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  (
( U. J  \  A )  i^i  ( U. J  \  B ) )  e.  J )
111, 10eqeltrid 2253 . 2  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  ( A  u.  B )
)  e.  J )
124cldss 12745 . . . . 5  |-  ( A  e.  ( Clsd `  J
)  ->  A  C_  U. J
)
134cldss 12745 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  U. J
)
1412, 13anim12i 336 . . . 4  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  C_  U. J  /\  B  C_  U. J ) )
15 unss 3296 . . . 4  |-  ( ( A  C_  U. J  /\  B  C_  U. J )  <-> 
( A  u.  B
)  C_  U. J )
1614, 15sylib 121 . . 3  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  u.  B )  C_ 
U. J )
174iscld2 12744 . . 3  |-  ( ( J  e.  Top  /\  ( A  u.  B
)  C_  U. J )  ->  ( ( A  u.  B )  e.  ( Clsd `  J
)  <->  ( U. J  \  ( A  u.  B
) )  e.  J
) )
183, 16, 17syl2anc 409 . 2  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  (
( A  u.  B
)  e.  ( Clsd `  J )  <->  ( U. J  \  ( A  u.  B ) )  e.  J ) )
1911, 18mpbird 166 1  |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J
) )  ->  ( A  u.  B )  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116   U.cuni 3789   ` cfv 5188   Topctop 12635   Clsdccld 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-top 12636  df-cld 12735
This theorem is referenced by:  iuncld  12755
  Copyright terms: Public domain W3C validator