ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabex Unicode version

Theorem opabex 5637
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
Hypotheses
Ref Expression
opabex.1  |-  A  e. 
_V
opabex.2  |-  ( x  e.  A  ->  E* y ph )
Assertion
Ref Expression
opabex  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabex
StepHypRef Expression
1 funopab 5153 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
2 opabex.2 . . . 4  |-  ( x  e.  A  ->  E* y ph )
3 moanimv 2072 . . . 4  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
42, 3mpbir 145 . . 3  |-  E* y
( x  e.  A  /\  ph )
51, 4mpgbir 1429 . 2  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
6 opabex.1 . . 3  |-  A  e. 
_V
7 dmopabss 4746 . . 3  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
86, 7ssexi 4061 . 2  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
9 funex 5636 . 2  |-  ( ( Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V )  ->  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  e.  _V )
105, 8, 9mp2an 422 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   E*wmo 1998   _Vcvv 2681   {copab 3983   dom cdm 4534   Fun wfun 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator