ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecid Unicode version

Theorem ecid 6703
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecid.1  |-  A  e. 
_V
Assertion
Ref Expression
ecid  |-  [ A ] `'  _E  =  A

Proof of Theorem ecid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . 4  |-  y  e. 
_V
2 ecid.1 . . . 4  |-  A  e. 
_V
31, 2elec 6679 . . 3  |-  ( y  e.  [ A ] `'  _E  <->  A `'  _E  y
)
42, 1brcnv 4874 . . 3  |-  ( A `'  _E  y  <->  y  _E  A )
52epelc 4351 . . 3  |-  ( y  _E  A  <->  y  e.  A )
63, 4, 53bitri 206 . 2  |-  ( y  e.  [ A ] `'  _E  <->  y  e.  A
)
76eqriv 2203 1  |-  [ A ] `'  _E  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   _Vcvv 2773   class class class wbr 4054    _E cep 4347   `'ccnv 4687   [cec 6636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-eprel 4349  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-ec 6640
This theorem is referenced by:  qsid  6705
  Copyright terms: Public domain W3C validator