| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecid | Unicode version | ||
| Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecid.1 |
|
| Ref | Expression |
|---|---|
| ecid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 |
. . . 4
| |
| 2 | ecid.1 |
. . . 4
| |
| 3 | 1, 2 | elec 6679 |
. . 3
|
| 4 | 2, 1 | brcnv 4874 |
. . 3
|
| 5 | 2 | epelc 4351 |
. . 3
|
| 6 | 3, 4, 5 | 3bitri 206 |
. 2
|
| 7 | 6 | eqriv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-eprel 4349 df-xp 4694 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-ec 6640 |
| This theorem is referenced by: qsid 6705 |
| Copyright terms: Public domain | W3C validator |