ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecid Unicode version

Theorem ecid 6532
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecid.1  |-  A  e. 
_V
Assertion
Ref Expression
ecid  |-  [ A ] `'  _E  =  A

Proof of Theorem ecid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2712 . . . 4  |-  y  e. 
_V
2 ecid.1 . . . 4  |-  A  e. 
_V
31, 2elec 6508 . . 3  |-  ( y  e.  [ A ] `'  _E  <->  A `'  _E  y
)
42, 1brcnv 4762 . . 3  |-  ( A `'  _E  y  <->  y  _E  A )
52epelc 4246 . . 3  |-  ( y  _E  A  <->  y  e.  A )
63, 4, 53bitri 205 . 2  |-  ( y  e.  [ A ] `'  _E  <->  y  e.  A
)
76eqriv 2151 1  |-  [ A ] `'  _E  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1332    e. wcel 2125   _Vcvv 2709   class class class wbr 3961    _E cep 4242   `'ccnv 4578   [cec 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-eprel 4244  df-xp 4585  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-ec 6471
This theorem is referenced by:  qsid  6534
  Copyright terms: Public domain W3C validator