ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecidg Unicode version

Theorem ecidg 6565
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
Assertion
Ref Expression
ecidg  |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )

Proof of Theorem ecidg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . 4  |-  y  e. 
_V
2 elecg 6539 . . . 4  |-  ( ( y  e.  _V  /\  A  e.  V )  ->  ( y  e.  [ A ] `'  _E  <->  A `'  _E  y ) )
31, 2mpan 421 . . 3  |-  ( A  e.  V  ->  (
y  e.  [ A ] `'  _E  <->  A `'  _E  y ) )
4 brcnvg 4785 . . . 4  |-  ( ( A  e.  V  /\  y  e.  _V )  ->  ( A `'  _E  y 
<->  y  _E  A ) )
51, 4mpan2 422 . . 3  |-  ( A  e.  V  ->  ( A `'  _E  y  <->  y  _E  A ) )
6 epelg 4268 . . 3  |-  ( A  e.  V  ->  (
y  _E  A  <->  y  e.  A ) )
73, 5, 63bitrd 213 . 2  |-  ( A  e.  V  ->  (
y  e.  [ A ] `'  _E  <->  y  e.  A ) )
87eqrdv 2163 1  |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982    _E cep 4265   `'ccnv 4603   [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-eprel 4267  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503
This theorem is referenced by:  addcnsrec  7783  mulcnsrec  7784
  Copyright terms: Public domain W3C validator