ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecidg Unicode version

Theorem ecidg 6699
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
Assertion
Ref Expression
ecidg  |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )

Proof of Theorem ecidg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . 4  |-  y  e. 
_V
2 elecg 6673 . . . 4  |-  ( ( y  e.  _V  /\  A  e.  V )  ->  ( y  e.  [ A ] `'  _E  <->  A `'  _E  y ) )
31, 2mpan 424 . . 3  |-  ( A  e.  V  ->  (
y  e.  [ A ] `'  _E  <->  A `'  _E  y ) )
4 brcnvg 4867 . . . 4  |-  ( ( A  e.  V  /\  y  e.  _V )  ->  ( A `'  _E  y 
<->  y  _E  A ) )
51, 4mpan2 425 . . 3  |-  ( A  e.  V  ->  ( A `'  _E  y  <->  y  _E  A ) )
6 epelg 4345 . . 3  |-  ( A  e.  V  ->  (
y  _E  A  <->  y  e.  A ) )
73, 5, 63bitrd 214 . 2  |-  ( A  e.  V  ->  (
y  e.  [ A ] `'  _E  <->  y  e.  A ) )
87eqrdv 2204 1  |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773   class class class wbr 4051    _E cep 4342   `'ccnv 4682   [cec 6631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-eprel 4344  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-ec 6635
This theorem is referenced by:  addcnsrec  7975  mulcnsrec  7976
  Copyright terms: Public domain W3C validator