ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecidg Unicode version

Theorem ecidg 6493
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
Assertion
Ref Expression
ecidg  |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )

Proof of Theorem ecidg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2689 . . . 4  |-  y  e. 
_V
2 elecg 6467 . . . 4  |-  ( ( y  e.  _V  /\  A  e.  V )  ->  ( y  e.  [ A ] `'  _E  <->  A `'  _E  y ) )
31, 2mpan 420 . . 3  |-  ( A  e.  V  ->  (
y  e.  [ A ] `'  _E  <->  A `'  _E  y ) )
4 brcnvg 4720 . . . 4  |-  ( ( A  e.  V  /\  y  e.  _V )  ->  ( A `'  _E  y 
<->  y  _E  A ) )
51, 4mpan2 421 . . 3  |-  ( A  e.  V  ->  ( A `'  _E  y  <->  y  _E  A ) )
6 epelg 4212 . . 3  |-  ( A  e.  V  ->  (
y  _E  A  <->  y  e.  A ) )
73, 5, 63bitrd 213 . 2  |-  ( A  e.  V  ->  (
y  e.  [ A ] `'  _E  <->  y  e.  A ) )
87eqrdv 2137 1  |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929    _E cep 4209   `'ccnv 4538   [cec 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-eprel 4211  df-xp 4545  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-ec 6431
This theorem is referenced by:  addcnsrec  7650  mulcnsrec  7651
  Copyright terms: Public domain W3C validator