ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o Unicode version

Theorem el2oss1o 6422
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 14026. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3606 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 df2o3 6409 . . 3  |-  2o  =  { (/) ,  1o }
31, 2eleq2s 2265 . 2  |-  ( A  e.  2o  ->  ( A  =  (/)  \/  A  =  1o ) )
4 0ss 3453 . . . 4  |-  (/)  C_  1o
5 sseq1 3170 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  1o  <->  (/)  C_  1o )
)
64, 5mpbiri 167 . . 3  |-  ( A  =  (/)  ->  A  C_  1o )
7 eqimss 3201 . . 3  |-  ( A  =  1o  ->  A  C_  1o )
86, 7jaoi 711 . 2  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  A  C_  1o )
93, 8syl 14 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    e. wcel 2141    C_ wss 3121   (/)c0 3414   {cpr 3584   1oc1o 6388   2oc2o 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-suc 4356  df-1o 6395  df-2o 6396
This theorem is referenced by:  nnnninfeq2  7105  nninfwlpoimlemg  7151  nninfsellemsuc  14045
  Copyright terms: Public domain W3C validator