ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o Unicode version

Theorem el2oss1o 6411
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 13873. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3599 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 df2o3 6398 . . 3  |-  2o  =  { (/) ,  1o }
31, 2eleq2s 2261 . 2  |-  ( A  e.  2o  ->  ( A  =  (/)  \/  A  =  1o ) )
4 0ss 3447 . . . 4  |-  (/)  C_  1o
5 sseq1 3165 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  1o  <->  (/)  C_  1o )
)
64, 5mpbiri 167 . . 3  |-  ( A  =  (/)  ->  A  C_  1o )
7 eqimss 3196 . . 3  |-  ( A  =  1o  ->  A  C_  1o )
86, 7jaoi 706 . 2  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  A  C_  1o )
93, 8syl 14 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343    e. wcel 2136    C_ wss 3116   (/)c0 3409   {cpr 3577   1oc1o 6377   2oc2o 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-suc 4349  df-1o 6384  df-2o 6385
This theorem is referenced by:  nnnninfeq2  7093  nninfsellemsuc  13892
  Copyright terms: Public domain W3C validator