ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o Unicode version

Theorem el2oss1o 6552
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 16127. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3666 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 df2o3 6539 . . 3  |-  2o  =  { (/) ,  1o }
31, 2eleq2s 2302 . 2  |-  ( A  e.  2o  ->  ( A  =  (/)  \/  A  =  1o ) )
4 0ss 3507 . . . 4  |-  (/)  C_  1o
5 sseq1 3224 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  1o  <->  (/)  C_  1o )
)
64, 5mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  C_  1o )
7 eqimss 3255 . . 3  |-  ( A  =  1o  ->  A  C_  1o )
86, 7jaoi 718 . 2  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  A  C_  1o )
93, 8syl 14 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178    C_ wss 3174   (/)c0 3468   {cpr 3644   1oc1o 6518   2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-suc 4436  df-1o 6525  df-2o 6526
This theorem is referenced by:  nnnninfeq2  7257  nninfwlpoimlemg  7303  nninfsellemsuc  16151
  Copyright terms: Public domain W3C validator