Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > el2oss1o | Unicode version |
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 13873. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
el2oss1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 3599 | . . 3 | |
2 | df2o3 6398 | . . 3 | |
3 | 1, 2 | eleq2s 2261 | . 2 |
4 | 0ss 3447 | . . . 4 | |
5 | sseq1 3165 | . . . 4 | |
6 | 4, 5 | mpbiri 167 | . . 3 |
7 | eqimss 3196 | . . 3 | |
8 | 6, 7 | jaoi 706 | . 2 |
9 | 3, 8 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 wss 3116 c0 3409 cpr 3577 c1o 6377 c2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-suc 4349 df-1o 6384 df-2o 6385 |
This theorem is referenced by: nnnninfeq2 7093 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |