ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o Unicode version

Theorem el2oss1o 6529
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 15928. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3656 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 df2o3 6516 . . 3  |-  2o  =  { (/) ,  1o }
31, 2eleq2s 2300 . 2  |-  ( A  e.  2o  ->  ( A  =  (/)  \/  A  =  1o ) )
4 0ss 3499 . . . 4  |-  (/)  C_  1o
5 sseq1 3216 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  1o  <->  (/)  C_  1o )
)
64, 5mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  C_  1o )
7 eqimss 3247 . . 3  |-  ( A  =  1o  ->  A  C_  1o )
86, 7jaoi 718 . 2  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  A  C_  1o )
93, 8syl 14 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2176    C_ wss 3166   (/)c0 3460   {cpr 3634   1oc1o 6495   2oc2o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-suc 4418  df-1o 6502  df-2o 6503
This theorem is referenced by:  nnnninfeq2  7231  nninfwlpoimlemg  7277  nninfsellemsuc  15949
  Copyright terms: Public domain W3C validator