ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o Unicode version

Theorem el2oss1o 6501
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 15605. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3645 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 df2o3 6488 . . 3  |-  2o  =  { (/) ,  1o }
31, 2eleq2s 2291 . 2  |-  ( A  e.  2o  ->  ( A  =  (/)  \/  A  =  1o ) )
4 0ss 3489 . . . 4  |-  (/)  C_  1o
5 sseq1 3206 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  1o  <->  (/)  C_  1o )
)
64, 5mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  C_  1o )
7 eqimss 3237 . . 3  |-  ( A  =  1o  ->  A  C_  1o )
86, 7jaoi 717 . 2  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  A  C_  1o )
93, 8syl 14 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3450   {cpr 3623   1oc1o 6467   2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by:  nnnninfeq2  7193  nninfwlpoimlemg  7239  nninfsellemsuc  15623
  Copyright terms: Public domain W3C validator