Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemsuc Unicode version

Theorem nninfsellemsuc 14846
Description: Lemma for nninfself 14847. (Contributed by Jim Kingdon, 6-Aug-2022.)
Assertion
Ref Expression
nninfsellemsuc  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
Distinct variable groups:    k, J    Q, k    i, k
Allowed substitution hints:    Q( i)    J( i)

Proof of Theorem nninfsellemsuc
StepHypRef Expression
1 peano2 4596 . . . . 5  |-  ( J  e.  om  ->  suc  J  e.  om )
2 nninfsellemcl 14845 . . . . . 6  |-  ( ( Q  e.  ( 2o 
^m )  /\  suc  J  e. 
om )  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
3 el2oss1o 6446 . . . . . 6  |-  ( if ( A. k  e. 
suc  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o  ->  if ( A. k  e.  suc  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
42, 3syl 14 . . . . 5  |-  ( ( Q  e.  ( 2o 
^m )  /\  suc  J  e. 
om )  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
51, 4sylan2 286 . . . 4  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
65adantr 276 . . 3  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
7 iftrue 3541 . . . 4  |-  ( A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  if ( A. k  e. 
suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
87adantl 277 . . 3  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
96, 8sseqtrrd 3196 . 2  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
10 simpl 109 . . . . . . 7  |-  ( ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J } 
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
1110con3i 632 . . . . . 6  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  -.  ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J } 
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
12 df-suc 4373 . . . . . . . 8  |-  suc  suc  J  =  ( suc  J  u.  { suc  J }
)
1312raleqi 2677 . . . . . . 7  |-  ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  ( suc  J  u.  { suc  J } ) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
14 ralunb 3318 . . . . . . 7  |-  ( A. k  e.  ( suc  J  u.  { suc  J } ) ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1513, 14bitri 184 . . . . . 6  |-  ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1611, 15sylnibr 677 . . . . 5  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  -.  A. k  e.  suc  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
1716iffalsed 3546 . . . 4  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  (/) )
18 0ss 3463 . . . 4  |-  (/)  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
1917, 18eqsstrdi 3209 . . 3  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2019adantl 277 . 2  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  -.  A. k  e.  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
21 nninfsellemdc 14844 . . 3  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  -> DECID  A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
22 exmiddc 836 . . 3  |-  (DECID  A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  \/  -.  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2321, 22syl 14 . 2  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  ( A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  \/  -.  A. k  e.  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
249, 20, 23mpjaodan 798 1  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    u. cun 3129    C_ wss 3131   (/)c0 3424   ifcif 3536   {csn 3594    |-> cmpt 4066   suc csuc 4367   omcom 4591   ` cfv 5218  (class class class)co 5877   1oc1o 6412   2oc2o 6413    ^m cmap 6650  ℕxnninf 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-map 6652  df-nninf 7121
This theorem is referenced by:  nninfself  14847
  Copyright terms: Public domain W3C validator