Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemsuc Unicode version

Theorem nninfsellemsuc 15115
Description: Lemma for nninfself 15116. (Contributed by Jim Kingdon, 6-Aug-2022.)
Assertion
Ref Expression
nninfsellemsuc  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
Distinct variable groups:    k, J    Q, k    i, k
Allowed substitution hints:    Q( i)    J( i)

Proof of Theorem nninfsellemsuc
StepHypRef Expression
1 peano2 4606 . . . . 5  |-  ( J  e.  om  ->  suc  J  e.  om )
2 nninfsellemcl 15114 . . . . . 6  |-  ( ( Q  e.  ( 2o 
^m )  /\  suc  J  e. 
om )  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
3 el2oss1o 6458 . . . . . 6  |-  ( if ( A. k  e. 
suc  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o  ->  if ( A. k  e.  suc  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
42, 3syl 14 . . . . 5  |-  ( ( Q  e.  ( 2o 
^m )  /\  suc  J  e. 
om )  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
51, 4sylan2 286 . . . 4  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
65adantr 276 . . 3  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  1o )
7 iftrue 3551 . . . 4  |-  ( A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  if ( A. k  e. 
suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
87adantl 277 . . 3  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
96, 8sseqtrrd 3206 . 2  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
10 simpl 109 . . . . . . 7  |-  ( ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J } 
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
1110con3i 633 . . . . . 6  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  -.  ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J } 
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
12 df-suc 4383 . . . . . . . 8  |-  suc  suc  J  =  ( suc  J  u.  { suc  J }
)
1312raleqi 2687 . . . . . . 7  |-  ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  ( suc  J  u.  { suc  J } ) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
14 ralunb 3328 . . . . . . 7  |-  ( A. k  e.  ( suc  J  u.  { suc  J } ) ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1513, 14bitri 184 . . . . . 6  |-  ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  J }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1611, 15sylnibr 678 . . . . 5  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  -.  A. k  e.  suc  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
1716iffalsed 3556 . . . 4  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  (/) )
18 0ss 3473 . . . 4  |-  (/)  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )
1917, 18eqsstrdi 3219 . . 3  |-  ( -. 
A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2019adantl 277 . 2  |-  ( ( ( Q  e.  ( 2o  ^m )  /\  J  e. 
om )  /\  -.  A. k  e.  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  if ( A. k  e.  suc  suc 
J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
21 nninfsellemdc 15113 . . 3  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  -> DECID  A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
22 exmiddc 837 . . 3  |-  (DECID  A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  \/  -.  A. k  e.  suc  J ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2321, 22syl 14 . 2  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  ( A. k  e.  suc  J ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  \/  -.  A. k  e.  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
249, 20, 23mpjaodan 799 1  |-  ( ( Q  e.  ( 2o 
^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1363    e. wcel 2158   A.wral 2465    u. cun 3139    C_ wss 3141   (/)c0 3434   ifcif 3546   {csn 3604    |-> cmpt 4076   suc csuc 4377   omcom 4601   ` cfv 5228  (class class class)co 5888   1oc1o 6424   2oc2o 6425    ^m cmap 6662  ℕxnninf 7132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1o 6431  df-2o 6432  df-map 6664  df-nninf 7133
This theorem is referenced by:  nninfself  15116
  Copyright terms: Public domain W3C validator