ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oafnex Unicode version

Theorem oafnex 6497
Description: The characteristic function for ordinal addition is defined everywhere. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oafnex  |-  ( x  e.  _V  |->  suc  x
)  Fn  _V

Proof of Theorem oafnex
StepHypRef Expression
1 vex 2763 . . 3  |-  x  e. 
_V
21sucex 4531 . 2  |-  suc  x  e.  _V
3 eqid 2193 . 2  |-  ( x  e.  _V  |->  suc  x
)  =  ( x  e.  _V  |->  suc  x
)
42, 3fnmpti 5382 1  |-  ( x  e.  _V  |->  suc  x
)  Fn  _V
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    |-> cmpt 4090   suc csuc 4396    Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256  df-fn 5257
This theorem is referenced by:  fnoa  6500  oaexg  6501  oav  6507  oav2  6516  oawordi  6522
  Copyright terms: Public domain W3C validator