ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oafnex Unicode version

Theorem oafnex 6590
Description: The characteristic function for ordinal addition is defined everywhere. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oafnex  |-  ( x  e.  _V  |->  suc  x
)  Fn  _V

Proof of Theorem oafnex
StepHypRef Expression
1 vex 2802 . . 3  |-  x  e. 
_V
21sucex 4591 . 2  |-  suc  x  e.  _V
3 eqid 2229 . 2  |-  ( x  e.  _V  |->  suc  x
)  =  ( x  e.  _V  |->  suc  x
)
42, 3fnmpti 5452 1  |-  ( x  e.  _V  |->  suc  x
)  Fn  _V
Colors of variables: wff set class
Syntax hints:   _Vcvv 2799    |-> cmpt 4145   suc csuc 4456    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-fun 5320  df-fn 5321
This theorem is referenced by:  fnoa  6593  oaexg  6594  oav  6600  oav2  6609  oawordi  6615
  Copyright terms: Public domain W3C validator