ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o GIF version

Theorem el2oss1o 6542
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 16066. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o (𝐴 ∈ 2o𝐴 ⊆ 1o)

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3661 . . 3 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 df2o3 6529 . . 3 2o = {∅, 1o}
31, 2eleq2s 2301 . 2 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
4 0ss 3503 . . . 4 ∅ ⊆ 1o
5 sseq1 3220 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ 1o ↔ ∅ ⊆ 1o))
64, 5mpbiri 168 . . 3 (𝐴 = ∅ → 𝐴 ⊆ 1o)
7 eqimss 3251 . . 3 (𝐴 = 1o𝐴 ⊆ 1o)
86, 7jaoi 718 . 2 ((𝐴 = ∅ ∨ 𝐴 = 1o) → 𝐴 ⊆ 1o)
93, 8syl 14 1 (𝐴 ∈ 2o𝐴 ⊆ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  wss 3170  c0 3464  {cpr 3639  1oc1o 6508  2oc2o 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-pr 3645  df-suc 4426  df-1o 6515  df-2o 6516
This theorem is referenced by:  nnnninfeq2  7246  nninfwlpoimlemg  7292  nninfsellemsuc  16090
  Copyright terms: Public domain W3C validator