ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o GIF version

Theorem el2oss1o 6587
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 16313. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o (𝐴 ∈ 2o𝐴 ⊆ 1o)

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3689 . . 3 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 df2o3 6574 . . 3 2o = {∅, 1o}
31, 2eleq2s 2324 . 2 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
4 0ss 3530 . . . 4 ∅ ⊆ 1o
5 sseq1 3247 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ 1o ↔ ∅ ⊆ 1o))
64, 5mpbiri 168 . . 3 (𝐴 = ∅ → 𝐴 ⊆ 1o)
7 eqimss 3278 . . 3 (𝐴 = 1o𝐴 ⊆ 1o)
86, 7jaoi 721 . 2 ((𝐴 = ∅ ∨ 𝐴 = 1o) → 𝐴 ⊆ 1o)
93, 8syl 14 1 (𝐴 ∈ 2o𝐴 ⊆ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  wss 3197  c0 3491  {cpr 3667  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  nnnninfeq2  7292  nninfwlpoimlemg  7338  nninfsellemsuc  16337
  Copyright terms: Public domain W3C validator