| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > el2oss1o | GIF version | ||
| Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 16066. (Contributed by Jim Kingdon, 8-Aug-2022.) |
| Ref | Expression |
|---|---|
| el2oss1o | ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 3661 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
| 2 | df2o3 6529 | . . 3 ⊢ 2o = {∅, 1o} | |
| 3 | 1, 2 | eleq2s 2301 | . 2 ⊢ (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o)) |
| 4 | 0ss 3503 | . . . 4 ⊢ ∅ ⊆ 1o | |
| 5 | sseq1 3220 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ 1o ↔ ∅ ⊆ 1o)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ 1o) |
| 7 | eqimss 3251 | . . 3 ⊢ (𝐴 = 1o → 𝐴 ⊆ 1o) | |
| 8 | 6, 7 | jaoi 718 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → 𝐴 ⊆ 1o) |
| 9 | 3, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 {cpr 3639 1oc1o 6508 2oc2o 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-suc 4426 df-1o 6515 df-2o 6516 |
| This theorem is referenced by: nnnninfeq2 7246 nninfwlpoimlemg 7292 nninfsellemsuc 16090 |
| Copyright terms: Public domain | W3C validator |