ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2oss1o GIF version

Theorem el2oss1o 6519
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 15792. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o (𝐴 ∈ 2o𝐴 ⊆ 1o)

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3655 . . 3 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 df2o3 6506 . . 3 2o = {∅, 1o}
31, 2eleq2s 2299 . 2 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
4 0ss 3498 . . . 4 ∅ ⊆ 1o
5 sseq1 3215 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ 1o ↔ ∅ ⊆ 1o))
64, 5mpbiri 168 . . 3 (𝐴 = ∅ → 𝐴 ⊆ 1o)
7 eqimss 3246 . . 3 (𝐴 = 1o𝐴 ⊆ 1o)
86, 7jaoi 717 . 2 ((𝐴 = ∅ ∨ 𝐴 = 1o) → 𝐴 ⊆ 1o)
93, 8syl 14 1 (𝐴 ∈ 2o𝐴 ⊆ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1372  wcel 2175  wss 3165  c0 3459  {cpr 3633  1oc1o 6485  2oc2o 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-suc 4416  df-1o 6492  df-2o 6493
This theorem is referenced by:  nnnninfeq2  7213  nninfwlpoimlemg  7259  nninfsellemsuc  15813
  Copyright terms: Public domain W3C validator