| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > el2oss1o | GIF version | ||
| Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 15648. (Contributed by Jim Kingdon, 8-Aug-2022.) |
| Ref | Expression |
|---|---|
| el2oss1o | ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 3646 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
| 2 | df2o3 6489 | . . 3 ⊢ 2o = {∅, 1o} | |
| 3 | 1, 2 | eleq2s 2291 | . 2 ⊢ (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o)) |
| 4 | 0ss 3490 | . . . 4 ⊢ ∅ ⊆ 1o | |
| 5 | sseq1 3207 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ 1o ↔ ∅ ⊆ 1o)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ 1o) |
| 7 | eqimss 3238 | . . 3 ⊢ (𝐴 = 1o → 𝐴 ⊆ 1o) | |
| 8 | 6, 7 | jaoi 717 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → 𝐴 ⊆ 1o) |
| 9 | 3, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3451 {cpr 3624 1oc1o 6468 2oc2o 6469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-suc 4407 df-1o 6475 df-2o 6476 |
| This theorem is referenced by: nnnninfeq2 7196 nninfwlpoimlemg 7242 nninfsellemsuc 15666 |
| Copyright terms: Public domain | W3C validator |