![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > el2oss1o | GIF version |
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 11843. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
el2oss1o | ⊢ (𝐴 ∈ 2𝑜 → 𝐴 ⊆ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 3469 | . . 3 ⊢ (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) | |
2 | df2o3 6195 | . . 3 ⊢ 2𝑜 = {∅, 1𝑜} | |
3 | 1, 2 | eleq2s 2182 | . 2 ⊢ (𝐴 ∈ 2𝑜 → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) |
4 | 0ss 3321 | . . . 4 ⊢ ∅ ⊆ 1𝑜 | |
5 | sseq1 3047 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ 1𝑜 ↔ ∅ ⊆ 1𝑜)) | |
6 | 4, 5 | mpbiri 166 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ 1𝑜) |
7 | eqimss 3078 | . . 3 ⊢ (𝐴 = 1𝑜 → 𝐴 ⊆ 1𝑜) | |
8 | 6, 7 | jaoi 671 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → 𝐴 ⊆ 1𝑜) |
9 | 3, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 2𝑜 → 𝐴 ⊆ 1𝑜) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 664 = wceq 1289 ∈ wcel 1438 ⊆ wss 2999 ∅c0 3286 {cpr 3447 1𝑜c1o 6174 2𝑜c2o 6175 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-sn 3452 df-pr 3453 df-suc 4198 df-1o 6181 df-2o 6182 |
This theorem is referenced by: nninfsellemsuc 11859 |
Copyright terms: Public domain | W3C validator |