| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2o | Unicode version | ||
| Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1lt2o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6512 |
. . 3
| |
| 2 | 1 | prid2 3740 |
. 2
|
| 3 | df2o3 6518 |
. 2
| |
| 4 | 2, 3 | eleqtrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-1o 6504 df-2o 6505 |
| This theorem is referenced by: en2 6914 infnninf 7228 infnninfOLD 7229 nnnninf 7230 nnnninfeq 7232 nninfisollemne 7235 fodjuf 7249 mkvprop 7262 nninfwlporlemd 7276 nninfwlporlem 7277 nninfwlpoimlemg 7279 nninfwlpoimlemginf 7280 exmidonfinlem 7303 pw1ne3 7344 3nelsucpw1 7348 3nsssucpw1 7350 2oneel 7370 2omotaplemst 7372 nninfinf 10590 nninfctlemfo 12394 unct 12846 xpsfeq 13210 xpsfval 13213 xpsval 13217 bj-charfun 15780 bj-charfundc 15781 012of 15967 2omap 15969 pwle2 15972 subctctexmid 15974 nnsf 15979 peano4nninf 15980 nninfsellemcl 15985 nninffeq 15994 |
| Copyright terms: Public domain | W3C validator |