| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2o | Unicode version | ||
| Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1lt2o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6533 |
. . 3
| |
| 2 | 1 | prid2 3750 |
. 2
|
| 3 | df2o3 6539 |
. 2
| |
| 4 | 2, 3 | eleqtrri 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-1o 6525 df-2o 6526 |
| This theorem is referenced by: en2 6936 1ndom2 6987 infnninf 7252 infnninfOLD 7253 nnnninf 7254 nnnninfeq 7256 nninfisollemne 7259 fodjuf 7273 mkvprop 7286 nninfwlporlemd 7300 nninfwlporlem 7301 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 exmidonfinlem 7332 pw1ne3 7376 3nelsucpw1 7380 3nsssucpw1 7382 2oneel 7403 2omotaplemst 7405 nninfinf 10625 nninfctlemfo 12476 unct 12928 xpsfeq 13292 xpsfval 13295 xpsval 13299 bj-charfun 15942 bj-charfundc 15943 012of 16130 2omap 16132 pwle2 16137 subctctexmid 16139 nnsf 16144 peano4nninf 16145 nninfsellemcl 16150 nninffeq 16159 |
| Copyright terms: Public domain | W3C validator |