![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2o | Unicode version |
Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
1lt2o |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6477 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | prid2 3725 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df2o3 6483 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eleqtrri 2269 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 df-2o 6470 |
This theorem is referenced by: infnninf 7183 infnninfOLD 7184 nnnninf 7185 nnnninfeq 7187 nninfisollemne 7190 fodjuf 7204 mkvprop 7217 nninfwlporlemd 7231 nninfwlporlem 7232 nninfwlpoimlemg 7234 nninfwlpoimlemginf 7235 exmidonfinlem 7253 pw1ne3 7290 3nelsucpw1 7294 3nsssucpw1 7296 2oneel 7316 2omotaplemst 7318 nninfinf 10514 nninfctlemfo 12177 unct 12599 xpsfeq 12928 xpsfval 12931 xpsval 12935 bj-charfun 15299 bj-charfundc 15300 012of 15486 pwle2 15489 subctctexmid 15491 nnsf 15495 peano4nninf 15496 nninfsellemcl 15501 nninffeq 15510 |
Copyright terms: Public domain | W3C validator |