| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2o | Unicode version | ||
| Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1lt2o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6510 |
. . 3
| |
| 2 | 1 | prid2 3740 |
. 2
|
| 3 | df2o3 6516 |
. 2
| |
| 4 | 2, 3 | eleqtrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 df-2o 6503 |
| This theorem is referenced by: en2 6912 infnninf 7226 infnninfOLD 7227 nnnninf 7228 nnnninfeq 7230 nninfisollemne 7233 fodjuf 7247 mkvprop 7260 nninfwlporlemd 7274 nninfwlporlem 7275 nninfwlpoimlemg 7277 nninfwlpoimlemginf 7278 exmidonfinlem 7301 pw1ne3 7342 3nelsucpw1 7346 3nsssucpw1 7348 2oneel 7368 2omotaplemst 7370 nninfinf 10588 nninfctlemfo 12361 unct 12813 xpsfeq 13177 xpsfval 13180 xpsval 13184 bj-charfun 15747 bj-charfundc 15748 012of 15934 2omap 15936 pwle2 15939 subctctexmid 15941 nnsf 15946 peano4nninf 15947 nninfsellemcl 15952 nninffeq 15961 |
| Copyright terms: Public domain | W3C validator |