| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2o | Unicode version | ||
| Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1lt2o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6570 |
. . 3
| |
| 2 | 1 | prid2 3773 |
. 2
|
| 3 | df2o3 6576 |
. 2
| |
| 4 | 2, 3 | eleqtrri 2305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6562 df-2o 6563 |
| This theorem is referenced by: en2 6973 1ndom2 7026 infnninf 7291 infnninfOLD 7292 nnnninf 7293 nnnninfeq 7295 nninfisollemne 7298 fodjuf 7312 mkvprop 7325 nninfwlporlemd 7339 nninfwlporlem 7340 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 exmidonfinlem 7371 pw1ne3 7415 3nelsucpw1 7419 3nsssucpw1 7421 2oneel 7442 2omotaplemst 7444 nninfinf 10665 nninfctlemfo 12561 unct 13013 xpsfeq 13378 xpsfval 13381 xpsval 13385 bj-charfun 16170 bj-charfundc 16171 012of 16357 2omap 16359 pwle2 16364 subctctexmid 16366 nnsf 16371 peano4nninf 16372 nninfsellemcl 16377 nninffeq 16386 |
| Copyright terms: Public domain | W3C validator |