| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1lt2o | Unicode version | ||
| Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| 1lt2o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1oex 6482 | 
. . 3
 | |
| 2 | 1 | prid2 3729 | 
. 2
 | 
| 3 | df2o3 6488 | 
. 2
 | |
| 4 | 2, 3 | eleqtrri 2272 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 df-2o 6475 | 
| This theorem is referenced by: infnninf 7190 infnninfOLD 7191 nnnninf 7192 nnnninfeq 7194 nninfisollemne 7197 fodjuf 7211 mkvprop 7224 nninfwlporlemd 7238 nninfwlporlem 7239 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 exmidonfinlem 7260 pw1ne3 7297 3nelsucpw1 7301 3nsssucpw1 7303 2oneel 7323 2omotaplemst 7325 nninfinf 10535 nninfctlemfo 12207 unct 12659 xpsfeq 12988 xpsfval 12991 xpsval 12995 bj-charfun 15453 bj-charfundc 15454 012of 15640 pwle2 15643 subctctexmid 15645 nnsf 15649 peano4nninf 15650 nninfsellemcl 15655 nninffeq 15664 | 
| Copyright terms: Public domain | W3C validator |