| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifpw | GIF version | ||
| Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
| Ref | Expression |
|---|---|
| eldifpw.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eldifpw | ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 3635 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | unss1 3350 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 3 | eldifpw.1 | . . . . . . 7 ⊢ 𝐶 ∈ V | |
| 4 | unexg 4508 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ∪ 𝐶) ∈ V) | |
| 5 | 3, 4 | mpan2 425 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ V) |
| 6 | elpwg 3634 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐶) ∈ V → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝐵 → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) |
| 8 | 2, 7 | imbitrrid 156 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶))) |
| 9 | 1, 8 | mpd 13 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶)) |
| 10 | elpwi 3635 | . . . . 5 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ⊆ 𝐵) | |
| 11 | 10 | unssbd 3359 | . . . 4 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵) |
| 12 | 11 | con3i 633 | . . 3 ⊢ (¬ 𝐶 ⊆ 𝐵 → ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵) |
| 13 | 9, 12 | anim12i 338 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) |
| 14 | eldif 3183 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) | |
| 15 | 13, 14 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 Vcvv 2776 ∖ cdif 3171 ∪ cun 3172 ⊆ wss 3174 𝒫 cpw 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |