![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifpw | GIF version |
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eldifpw | ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 3586 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | unss1 3306 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
3 | eldifpw.1 | . . . . . . 7 ⊢ 𝐶 ∈ V | |
4 | unexg 4445 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ∪ 𝐶) ∈ V) | |
5 | 3, 4 | mpan2 425 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ V) |
6 | elpwg 3585 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐶) ∈ V → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) | |
7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝐵 → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) |
8 | 2, 7 | imbitrrid 156 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶))) |
9 | 1, 8 | mpd 13 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶)) |
10 | elpwi 3586 | . . . . 5 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ⊆ 𝐵) | |
11 | 10 | unssbd 3315 | . . . 4 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵) |
12 | 11 | con3i 632 | . . 3 ⊢ (¬ 𝐶 ⊆ 𝐵 → ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵) |
13 | 9, 12 | anim12i 338 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) |
14 | eldif 3140 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) | |
15 | 13, 14 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 ∪ cun 3129 ⊆ wss 3131 𝒫 cpw 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |