Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifpw | GIF version |
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eldifpw | ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 3575 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | unss1 3296 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
3 | eldifpw.1 | . . . . . . 7 ⊢ 𝐶 ∈ V | |
4 | unexg 4428 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ∪ 𝐶) ∈ V) | |
5 | 3, 4 | mpan2 423 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ V) |
6 | elpwg 3574 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐶) ∈ V → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) | |
7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝐵 → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) |
8 | 2, 7 | syl5ibr 155 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶))) |
9 | 1, 8 | mpd 13 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶)) |
10 | elpwi 3575 | . . . . 5 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ⊆ 𝐵) | |
11 | 10 | unssbd 3305 | . . . 4 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵) |
12 | 11 | con3i 627 | . . 3 ⊢ (¬ 𝐶 ⊆ 𝐵 → ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵) |
13 | 9, 12 | anim12i 336 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) |
14 | eldif 3130 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) | |
15 | 13, 14 | sylibr 133 | 1 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∪ cun 3119 ⊆ wss 3121 𝒫 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |