ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgslem1 Unicode version

Theorem lgslem1 13695
Description: When  a is coprime to the prime  p,  a ^ ( ( p  -  1 )  / 
2 ) is equivalent  mod  p to  1 or  -u 1, and so adding  1 makes it equivalent to  0 or  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 3249 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
213ad2ant2 1014 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  Prime )
3 prmnn 12064 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  NN )
5 simp1 992 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  A  e.  ZZ )
6 prmz 12065 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
72, 6syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  ZZ )
85, 7gcdcomd 11929 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
9 simp3 994 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  -.  P  ||  A )
10 coprm 12098 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
112, 5, 10syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
129, 11mpbid 146 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
138, 12eqtrd 2203 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
14 eulerth 12187 . . . . . . 7  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
154, 5, 13, 14syl3anc 1233 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
16 phiprm 12177 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
172, 16syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  1 ) )
18 nnm1nn0 9176 . . . . . . . . . 10  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
194, 18syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  NN0 )
2017, 19eqeltrd 2247 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  e. 
NN0 )
21 zexpcl 10491 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
225, 20, 21syl2anc 409 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
23 1zzd 9239 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  1  e.  ZZ )
24 moddvds 11761 . . . . . . 7  |-  ( ( P  e.  NN  /\  ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
254, 22, 23, 24syl3anc 1233 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
2615, 25mpbid 146 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  ||  ( ( A ^
( phi `  P
) )  -  1 ) )
2719nn0cnd 9190 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  CC )
28 2cnd 8951 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  CC )
29 2ap0 8971 . . . . . . . . . . . . 13  |-  2 #  0
3029a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2 #  0 )
3127, 28, 30divcanap1d 8708 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
3217, 31eqtr4d 2206 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( ( ( P  -  1 )  / 
2 )  x.  2 ) )
3332oveq2d 5869 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ (
( ( P  - 
1 )  /  2
)  x.  2 ) ) )
345zcnd 9335 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  A  e.  CC )
35 2nn0 9152 . . . . . . . . . . 11  |-  2  e.  NN0
3635a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  NN0 )
37 oddprm 12213 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
38373ad2ant2 1014 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
3938nnnn0d 9188 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
4034, 36, 39expmuld 10612 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( ( P  -  1 )  /  2 )  x.  2 ) )  =  ( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4133, 40eqtrd 2203 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4241oveq1d 5868 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  1 ) )
43 sq1 10569 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4443oveq2i 5864 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) ) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  1 )
4542, 44eqtr4di 2221 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  (
1 ^ 2 ) ) )
46 zexpcl 10491 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
475, 39, 46syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
4847zcnd 9335 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
49 ax-1cn 7867 . . . . . . 7  |-  1  e.  CC
50 subsq 10582 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  (
1 ^ 2 ) )  =  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) ) )
5148, 49, 50sylancl 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) )
5245, 51eqtrd 2203 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  x.  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
5326, 52breqtrd 4015 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  ||  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  x.  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
5447peano2zd 9337 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )
55 peano2zm 9250 . . . . . 6  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )
5647, 55syl 14 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )
57 euclemma 12100 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )  -> 
( P  ||  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  x.  ( ( A ^ ( ( P  -  1 )  /  2 ) )  -  1 ) )  <-> 
( P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  \/  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) ) )
582, 54, 56, 57syl3anc 1233 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) )  <->  ( P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  \/  P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) ) )
5953, 58mpbid 146 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  \/  P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) )
60 dvdsval3 11753 . . . . 5  |-  ( ( P  e.  NN  /\  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  <->  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  =  0 ) )
614, 54, 60syl2anc 409 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  0 ) )
62 2z 9240 . . . . . . 7  |-  2  e.  ZZ
6362a1i 9 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  ZZ )
64 moddvds 11761 . . . . . 6  |-  ( ( P  e.  NN  /\  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  =  ( 2  mod  P )  <-> 
P  ||  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  2 ) ) )
654, 54, 63, 64syl3anc 1233 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( 2  mod  P )  <->  P  ||  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  2 ) ) )
66 zq 9585 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
6762, 66mp1i 10 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  QQ )
68 zq 9585 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  e.  QQ )
697, 68syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  QQ )
70 0le2 8968 . . . . . . . 8  |-  0  <_  2
7170a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  0  <_  2 )
72 eldifsni 3712 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
73723ad2ant2 1014 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  =/=  2 )
74 zapne 9286 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  ->  ( P #  2  <->  P  =/=  2 ) )
757, 62, 74sylancl 411 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P #  2  <->  P  =/=  2
) )
7673, 75mpbird 166 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P #  2 )
77 2re 8948 . . . . . . . . . 10  |-  2  e.  RR
7877a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  RR )
794nnred 8891 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  RR )
80 prmuz2 12085 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
812, 80syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
82 eluzle 9499 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
8381, 82syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  <_  P )
8478, 79, 83leltapd 8558 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
2  <  P  <->  P #  2
) )
8576, 84mpbird 166 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  <  P )
86 modqid 10305 . . . . . . 7  |-  ( ( ( 2  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
2  /\  2  <  P ) )  ->  (
2  mod  P )  =  2 )
8767, 69, 71, 85, 86syl22anc 1234 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
2  mod  P )  =  2 )
8887eqeq2d 2182 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( 2  mod  P )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) )
89 df-2 8937 . . . . . . . 8  |-  2  =  ( 1  +  1 )
9089oveq2i 5864 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  2 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  (
1  +  1 ) )
9149a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  1  e.  CC )
9248, 91, 91pnpcan2d 8268 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  ( 1  +  1 ) )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) )
9390, 92eqtrid 2215 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  2 )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) )
9493breq2d 4001 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  - 
2 )  <->  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
9565, 88, 943bitr3rd 218 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) )
9661, 95orbi12d 788 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  \/  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) )  <->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  0  \/  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) ) )
9759, 96mpbid 146 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
9854, 4zmodcld 10301 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  NN0 )
99 elprg 3603 . . 3  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  NN0  ->  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  <->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  \/  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2 ) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  e.  { 0 ,  2 }  <->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  \/  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2 ) ) )
10197, 100mpbird 166 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340    \ cdif 3118   {csn 3583   {cpr 3584   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   QQcq 9578    mod cmo 10278   ^cexp 10475    || cdvds 11749    gcd cgcd 11897   Primecprime 12061   phicphi 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165
This theorem is referenced by:  lgslem4  13698
  Copyright terms: Public domain W3C validator