| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgslem1 | Unicode version | ||
| Description: When |
| Ref | Expression |
|---|---|
| lgslem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3286 |
. . . . . . . . 9
| |
| 2 | 1 | 3ad2ant2 1021 |
. . . . . . . 8
|
| 3 | prmnn 12303 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 14 |
. . . . . . 7
|
| 5 | simp1 999 |
. . . . . . 7
| |
| 6 | prmz 12304 |
. . . . . . . . . 10
| |
| 7 | 2, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | 5, 7 | gcdcomd 12166 |
. . . . . . . 8
|
| 9 | simp3 1001 |
. . . . . . . . 9
| |
| 10 | coprm 12337 |
. . . . . . . . . 10
| |
| 11 | 2, 5, 10 | syl2anc 411 |
. . . . . . . . 9
|
| 12 | 9, 11 | mpbid 147 |
. . . . . . . 8
|
| 13 | 8, 12 | eqtrd 2229 |
. . . . . . 7
|
| 14 | eulerth 12426 |
. . . . . . 7
| |
| 15 | 4, 5, 13, 14 | syl3anc 1249 |
. . . . . 6
|
| 16 | phiprm 12416 |
. . . . . . . . . 10
| |
| 17 | 2, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | nnm1nn0 9307 |
. . . . . . . . . 10
| |
| 19 | 4, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqeltrd 2273 |
. . . . . . . 8
|
| 21 | zexpcl 10663 |
. . . . . . . 8
| |
| 22 | 5, 20, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 1zzd 9370 |
. . . . . . 7
| |
| 24 | moddvds 11981 |
. . . . . . 7
| |
| 25 | 4, 22, 23, 24 | syl3anc 1249 |
. . . . . 6
|
| 26 | 15, 25 | mpbid 147 |
. . . . 5
|
| 27 | 19 | nn0cnd 9321 |
. . . . . . . . . . . 12
|
| 28 | 2cnd 9080 |
. . . . . . . . . . . 12
| |
| 29 | 2ap0 9100 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | a1i 9 |
. . . . . . . . . . . 12
|
| 31 | 27, 28, 30 | divcanap1d 8835 |
. . . . . . . . . . 11
|
| 32 | 17, 31 | eqtr4d 2232 |
. . . . . . . . . 10
|
| 33 | 32 | oveq2d 5941 |
. . . . . . . . 9
|
| 34 | 5 | zcnd 9466 |
. . . . . . . . . 10
|
| 35 | 2nn0 9283 |
. . . . . . . . . . 11
| |
| 36 | 35 | a1i 9 |
. . . . . . . . . 10
|
| 37 | oddprm 12453 |
. . . . . . . . . . . 12
| |
| 38 | 37 | 3ad2ant2 1021 |
. . . . . . . . . . 11
|
| 39 | 38 | nnnn0d 9319 |
. . . . . . . . . 10
|
| 40 | 34, 36, 39 | expmuld 10785 |
. . . . . . . . 9
|
| 41 | 33, 40 | eqtrd 2229 |
. . . . . . . 8
|
| 42 | 41 | oveq1d 5940 |
. . . . . . 7
|
| 43 | sq1 10742 |
. . . . . . . 8
| |
| 44 | 43 | oveq2i 5936 |
. . . . . . 7
|
| 45 | 42, 44 | eqtr4di 2247 |
. . . . . 6
|
| 46 | zexpcl 10663 |
. . . . . . . . 9
| |
| 47 | 5, 39, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 47 | zcnd 9466 |
. . . . . . 7
|
| 49 | ax-1cn 7989 |
. . . . . . 7
| |
| 50 | subsq 10755 |
. . . . . . 7
| |
| 51 | 48, 49, 50 | sylancl 413 |
. . . . . 6
|
| 52 | 45, 51 | eqtrd 2229 |
. . . . 5
|
| 53 | 26, 52 | breqtrd 4060 |
. . . 4
|
| 54 | 47 | peano2zd 9468 |
. . . . 5
|
| 55 | peano2zm 9381 |
. . . . . 6
| |
| 56 | 47, 55 | syl 14 |
. . . . 5
|
| 57 | euclemma 12339 |
. . . . 5
| |
| 58 | 2, 54, 56, 57 | syl3anc 1249 |
. . . 4
|
| 59 | 53, 58 | mpbid 147 |
. . 3
|
| 60 | dvdsval3 11973 |
. . . . 5
| |
| 61 | 4, 54, 60 | syl2anc 411 |
. . . 4
|
| 62 | 2z 9371 |
. . . . . . 7
| |
| 63 | 62 | a1i 9 |
. . . . . 6
|
| 64 | moddvds 11981 |
. . . . . 6
| |
| 65 | 4, 54, 63, 64 | syl3anc 1249 |
. . . . 5
|
| 66 | zq 9717 |
. . . . . . . 8
| |
| 67 | 62, 66 | mp1i 10 |
. . . . . . 7
|
| 68 | zq 9717 |
. . . . . . . 8
| |
| 69 | 7, 68 | syl 14 |
. . . . . . 7
|
| 70 | 0le2 9097 |
. . . . . . . 8
| |
| 71 | 70 | a1i 9 |
. . . . . . 7
|
| 72 | eldifsni 3752 |
. . . . . . . . . 10
| |
| 73 | 72 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 74 | zapne 9417 |
. . . . . . . . . 10
| |
| 75 | 7, 62, 74 | sylancl 413 |
. . . . . . . . 9
|
| 76 | 73, 75 | mpbird 167 |
. . . . . . . 8
|
| 77 | 2re 9077 |
. . . . . . . . . 10
| |
| 78 | 77 | a1i 9 |
. . . . . . . . 9
|
| 79 | 4 | nnred 9020 |
. . . . . . . . 9
|
| 80 | prmuz2 12324 |
. . . . . . . . . . 11
| |
| 81 | 2, 80 | syl 14 |
. . . . . . . . . 10
|
| 82 | eluzle 9630 |
. . . . . . . . . 10
| |
| 83 | 81, 82 | syl 14 |
. . . . . . . . 9
|
| 84 | 78, 79, 83 | leltapd 8683 |
. . . . . . . 8
|
| 85 | 76, 84 | mpbird 167 |
. . . . . . 7
|
| 86 | modqid 10458 |
. . . . . . 7
| |
| 87 | 67, 69, 71, 85, 86 | syl22anc 1250 |
. . . . . 6
|
| 88 | 87 | eqeq2d 2208 |
. . . . 5
|
| 89 | df-2 9066 |
. . . . . . . 8
| |
| 90 | 89 | oveq2i 5936 |
. . . . . . 7
|
| 91 | 49 | a1i 9 |
. . . . . . . 8
|
| 92 | 48, 91, 91 | pnpcan2d 8392 |
. . . . . . 7
|
| 93 | 90, 92 | eqtrid 2241 |
. . . . . 6
|
| 94 | 93 | breq2d 4046 |
. . . . 5
|
| 95 | 65, 88, 94 | 3bitr3rd 219 |
. . . 4
|
| 96 | 61, 95 | orbi12d 794 |
. . 3
|
| 97 | 59, 96 | mpbid 147 |
. 2
|
| 98 | 54, 4 | zmodcld 10454 |
. . 3
|
| 99 | elprg 3643 |
. . 3
| |
| 100 | 98, 99 | syl 14 |
. 2
|
| 101 | 97, 100 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 df-dvds 11970 df-gcd 12146 df-prm 12301 df-phi 12404 |
| This theorem is referenced by: lgslem4 15328 |
| Copyright terms: Public domain | W3C validator |