| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgslem1 | Unicode version | ||
| Description: When |
| Ref | Expression |
|---|---|
| lgslem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3303 |
. . . . . . . . 9
| |
| 2 | 1 | 3ad2ant2 1022 |
. . . . . . . 8
|
| 3 | prmnn 12547 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 14 |
. . . . . . 7
|
| 5 | simp1 1000 |
. . . . . . 7
| |
| 6 | prmz 12548 |
. . . . . . . . . 10
| |
| 7 | 2, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | 5, 7 | gcdcomd 12410 |
. . . . . . . 8
|
| 9 | simp3 1002 |
. . . . . . . . 9
| |
| 10 | coprm 12581 |
. . . . . . . . . 10
| |
| 11 | 2, 5, 10 | syl2anc 411 |
. . . . . . . . 9
|
| 12 | 9, 11 | mpbid 147 |
. . . . . . . 8
|
| 13 | 8, 12 | eqtrd 2240 |
. . . . . . 7
|
| 14 | eulerth 12670 |
. . . . . . 7
| |
| 15 | 4, 5, 13, 14 | syl3anc 1250 |
. . . . . 6
|
| 16 | phiprm 12660 |
. . . . . . . . . 10
| |
| 17 | 2, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | nnm1nn0 9371 |
. . . . . . . . . 10
| |
| 19 | 4, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqeltrd 2284 |
. . . . . . . 8
|
| 21 | zexpcl 10736 |
. . . . . . . 8
| |
| 22 | 5, 20, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 1zzd 9434 |
. . . . . . 7
| |
| 24 | moddvds 12225 |
. . . . . . 7
| |
| 25 | 4, 22, 23, 24 | syl3anc 1250 |
. . . . . 6
|
| 26 | 15, 25 | mpbid 147 |
. . . . 5
|
| 27 | 19 | nn0cnd 9385 |
. . . . . . . . . . . 12
|
| 28 | 2cnd 9144 |
. . . . . . . . . . . 12
| |
| 29 | 2ap0 9164 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | a1i 9 |
. . . . . . . . . . . 12
|
| 31 | 27, 28, 30 | divcanap1d 8899 |
. . . . . . . . . . 11
|
| 32 | 17, 31 | eqtr4d 2243 |
. . . . . . . . . 10
|
| 33 | 32 | oveq2d 5983 |
. . . . . . . . 9
|
| 34 | 5 | zcnd 9531 |
. . . . . . . . . 10
|
| 35 | 2nn0 9347 |
. . . . . . . . . . 11
| |
| 36 | 35 | a1i 9 |
. . . . . . . . . 10
|
| 37 | oddprm 12697 |
. . . . . . . . . . . 12
| |
| 38 | 37 | 3ad2ant2 1022 |
. . . . . . . . . . 11
|
| 39 | 38 | nnnn0d 9383 |
. . . . . . . . . 10
|
| 40 | 34, 36, 39 | expmuld 10858 |
. . . . . . . . 9
|
| 41 | 33, 40 | eqtrd 2240 |
. . . . . . . 8
|
| 42 | 41 | oveq1d 5982 |
. . . . . . 7
|
| 43 | sq1 10815 |
. . . . . . . 8
| |
| 44 | 43 | oveq2i 5978 |
. . . . . . 7
|
| 45 | 42, 44 | eqtr4di 2258 |
. . . . . 6
|
| 46 | zexpcl 10736 |
. . . . . . . . 9
| |
| 47 | 5, 39, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 47 | zcnd 9531 |
. . . . . . 7
|
| 49 | ax-1cn 8053 |
. . . . . . 7
| |
| 50 | subsq 10828 |
. . . . . . 7
| |
| 51 | 48, 49, 50 | sylancl 413 |
. . . . . 6
|
| 52 | 45, 51 | eqtrd 2240 |
. . . . 5
|
| 53 | 26, 52 | breqtrd 4085 |
. . . 4
|
| 54 | 47 | peano2zd 9533 |
. . . . 5
|
| 55 | peano2zm 9445 |
. . . . . 6
| |
| 56 | 47, 55 | syl 14 |
. . . . 5
|
| 57 | euclemma 12583 |
. . . . 5
| |
| 58 | 2, 54, 56, 57 | syl3anc 1250 |
. . . 4
|
| 59 | 53, 58 | mpbid 147 |
. . 3
|
| 60 | dvdsval3 12217 |
. . . . 5
| |
| 61 | 4, 54, 60 | syl2anc 411 |
. . . 4
|
| 62 | 2z 9435 |
. . . . . . 7
| |
| 63 | 62 | a1i 9 |
. . . . . 6
|
| 64 | moddvds 12225 |
. . . . . 6
| |
| 65 | 4, 54, 63, 64 | syl3anc 1250 |
. . . . 5
|
| 66 | zq 9782 |
. . . . . . . 8
| |
| 67 | 62, 66 | mp1i 10 |
. . . . . . 7
|
| 68 | zq 9782 |
. . . . . . . 8
| |
| 69 | 7, 68 | syl 14 |
. . . . . . 7
|
| 70 | 0le2 9161 |
. . . . . . . 8
| |
| 71 | 70 | a1i 9 |
. . . . . . 7
|
| 72 | eldifsni 3773 |
. . . . . . . . . 10
| |
| 73 | 72 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 74 | zapne 9482 |
. . . . . . . . . 10
| |
| 75 | 7, 62, 74 | sylancl 413 |
. . . . . . . . 9
|
| 76 | 73, 75 | mpbird 167 |
. . . . . . . 8
|
| 77 | 2re 9141 |
. . . . . . . . . 10
| |
| 78 | 77 | a1i 9 |
. . . . . . . . 9
|
| 79 | 4 | nnred 9084 |
. . . . . . . . 9
|
| 80 | prmuz2 12568 |
. . . . . . . . . . 11
| |
| 81 | 2, 80 | syl 14 |
. . . . . . . . . 10
|
| 82 | eluzle 9695 |
. . . . . . . . . 10
| |
| 83 | 81, 82 | syl 14 |
. . . . . . . . 9
|
| 84 | 78, 79, 83 | leltapd 8747 |
. . . . . . . 8
|
| 85 | 76, 84 | mpbird 167 |
. . . . . . 7
|
| 86 | modqid 10531 |
. . . . . . 7
| |
| 87 | 67, 69, 71, 85, 86 | syl22anc 1251 |
. . . . . 6
|
| 88 | 87 | eqeq2d 2219 |
. . . . 5
|
| 89 | df-2 9130 |
. . . . . . . 8
| |
| 90 | 89 | oveq2i 5978 |
. . . . . . 7
|
| 91 | 49 | a1i 9 |
. . . . . . . 8
|
| 92 | 48, 91, 91 | pnpcan2d 8456 |
. . . . . . 7
|
| 93 | 90, 92 | eqtrid 2252 |
. . . . . 6
|
| 94 | 93 | breq2d 4071 |
. . . . 5
|
| 95 | 65, 88, 94 | 3bitr3rd 219 |
. . . 4
|
| 96 | 61, 95 | orbi12d 795 |
. . 3
|
| 97 | 59, 96 | mpbid 147 |
. 2
|
| 98 | 54, 4 | zmodcld 10527 |
. . 3
|
| 99 | elprg 3663 |
. . 3
| |
| 100 | 98, 99 | syl 14 |
. 2
|
| 101 | 97, 100 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-2o 6526 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 df-dvds 12214 df-gcd 12390 df-prm 12545 df-phi 12648 |
| This theorem is referenced by: lgslem4 15595 |
| Copyright terms: Public domain | W3C validator |