ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgslem1 Unicode version

Theorem lgslem1 13970
Description: When  a is coprime to the prime  p,  a ^ ( ( p  -  1 )  / 
2 ) is equivalent  mod  p to  1 or  -u 1, and so adding  1 makes it equivalent to  0 or  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 3255 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
213ad2ant2 1019 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  Prime )
3 prmnn 12075 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  NN )
5 simp1 997 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  A  e.  ZZ )
6 prmz 12076 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
72, 6syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  ZZ )
85, 7gcdcomd 11940 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
9 simp3 999 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  -.  P  ||  A )
10 coprm 12109 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
112, 5, 10syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
129, 11mpbid 147 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
138, 12eqtrd 2208 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
14 eulerth 12198 . . . . . . 7  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
154, 5, 13, 14syl3anc 1238 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
16 phiprm 12188 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
172, 16syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  1 ) )
18 nnm1nn0 9188 . . . . . . . . . 10  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
194, 18syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  NN0 )
2017, 19eqeltrd 2252 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  e. 
NN0 )
21 zexpcl 10503 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
225, 20, 21syl2anc 411 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
23 1zzd 9251 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  1  e.  ZZ )
24 moddvds 11772 . . . . . . 7  |-  ( ( P  e.  NN  /\  ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
254, 22, 23, 24syl3anc 1238 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
2615, 25mpbid 147 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  ||  ( ( A ^
( phi `  P
) )  -  1 ) )
2719nn0cnd 9202 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  CC )
28 2cnd 8963 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  CC )
29 2ap0 8983 . . . . . . . . . . . . 13  |-  2 #  0
3029a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2 #  0 )
3127, 28, 30divcanap1d 8720 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
3217, 31eqtr4d 2211 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( ( ( P  -  1 )  / 
2 )  x.  2 ) )
3332oveq2d 5881 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ (
( ( P  - 
1 )  /  2
)  x.  2 ) ) )
345zcnd 9347 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  A  e.  CC )
35 2nn0 9164 . . . . . . . . . . 11  |-  2  e.  NN0
3635a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  NN0 )
37 oddprm 12224 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
38373ad2ant2 1019 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
3938nnnn0d 9200 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
4034, 36, 39expmuld 10624 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( ( P  -  1 )  /  2 )  x.  2 ) )  =  ( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4133, 40eqtrd 2208 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4241oveq1d 5880 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  1 ) )
43 sq1 10581 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4443oveq2i 5876 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) ) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  1 )
4542, 44eqtr4di 2226 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  (
1 ^ 2 ) ) )
46 zexpcl 10503 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
475, 39, 46syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
4847zcnd 9347 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
49 ax-1cn 7879 . . . . . . 7  |-  1  e.  CC
50 subsq 10594 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  (
1 ^ 2 ) )  =  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) ) )
5148, 49, 50sylancl 413 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) )
5245, 51eqtrd 2208 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  x.  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
5326, 52breqtrd 4024 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  ||  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  x.  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
5447peano2zd 9349 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )
55 peano2zm 9262 . . . . . 6  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )
5647, 55syl 14 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )
57 euclemma 12111 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )  -> 
( P  ||  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  x.  ( ( A ^ ( ( P  -  1 )  /  2 ) )  -  1 ) )  <-> 
( P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  \/  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) ) )
582, 54, 56, 57syl3anc 1238 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) )  <->  ( P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  \/  P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) ) )
5953, 58mpbid 147 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  \/  P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) )
60 dvdsval3 11764 . . . . 5  |-  ( ( P  e.  NN  /\  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  <->  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  =  0 ) )
614, 54, 60syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  0 ) )
62 2z 9252 . . . . . . 7  |-  2  e.  ZZ
6362a1i 9 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  ZZ )
64 moddvds 11772 . . . . . 6  |-  ( ( P  e.  NN  /\  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  =  ( 2  mod  P )  <-> 
P  ||  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  2 ) ) )
654, 54, 63, 64syl3anc 1238 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( 2  mod  P )  <->  P  ||  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  2 ) ) )
66 zq 9597 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
6762, 66mp1i 10 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  QQ )
68 zq 9597 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  e.  QQ )
697, 68syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  QQ )
70 0le2 8980 . . . . . . . 8  |-  0  <_  2
7170a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  0  <_  2 )
72 eldifsni 3718 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
73723ad2ant2 1019 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  =/=  2 )
74 zapne 9298 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  ->  ( P #  2  <->  P  =/=  2 ) )
757, 62, 74sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P #  2  <->  P  =/=  2
) )
7673, 75mpbird 167 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P #  2 )
77 2re 8960 . . . . . . . . . 10  |-  2  e.  RR
7877a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  RR )
794nnred 8903 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  RR )
80 prmuz2 12096 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
812, 80syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
82 eluzle 9511 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
8381, 82syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  <_  P )
8478, 79, 83leltapd 8570 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
2  <  P  <->  P #  2
) )
8576, 84mpbird 167 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  <  P )
86 modqid 10317 . . . . . . 7  |-  ( ( ( 2  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
2  /\  2  <  P ) )  ->  (
2  mod  P )  =  2 )
8767, 69, 71, 85, 86syl22anc 1239 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
2  mod  P )  =  2 )
8887eqeq2d 2187 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( 2  mod  P )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) )
89 df-2 8949 . . . . . . . 8  |-  2  =  ( 1  +  1 )
9089oveq2i 5876 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  2 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  (
1  +  1 ) )
9149a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  1  e.  CC )
9248, 91, 91pnpcan2d 8280 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  ( 1  +  1 ) )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) )
9390, 92eqtrid 2220 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  2 )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) )
9493breq2d 4010 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  - 
2 )  <->  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
9565, 88, 943bitr3rd 219 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) )
9661, 95orbi12d 793 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  \/  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) )  <->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  0  \/  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) ) )
9759, 96mpbid 147 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
9854, 4zmodcld 10313 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  NN0 )
99 elprg 3609 . . 3  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  NN0  ->  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  <->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  \/  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2 ) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  e.  { 0 ,  2 }  <->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  \/  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2 ) ) )
10197, 100mpbird 167 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2146    =/= wne 2345    \ cdif 3124   {csn 3589   {cpr 3590   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   CCcc 7784   RRcr 7785   0cc0 7786   1c1 7787    + caddc 7789    x. cmul 7791    < clt 7966    <_ cle 7967    - cmin 8102   # cap 8512    / cdiv 8601   NNcn 8890   2c2 8941   NN0cn0 9147   ZZcz 9224   ZZ>=cuz 9499   QQcq 9590    mod cmo 10290   ^cexp 10487    || cdvds 11760    gcd cgcd 11908   Primecprime 12072   phicphi 12174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-2o 6408  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-fz 9978  df-fzo 10111  df-fl 10238  df-mod 10291  df-seqfrec 10414  df-exp 10488  df-ihash 10722  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-clim 11253  df-proddc 11525  df-dvds 11761  df-gcd 11909  df-prm 12073  df-phi 12176
This theorem is referenced by:  lgslem4  13973
  Copyright terms: Public domain W3C validator