ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgslem1 Unicode version

Theorem lgslem1 15349
Description: When  a is coprime to the prime  p,  a ^ ( ( p  -  1 )  / 
2 ) is equivalent  mod  p to  1 or  -u 1, and so adding  1 makes it equivalent to  0 or  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 3286 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
213ad2ant2 1021 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  Prime )
3 prmnn 12305 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  NN )
5 simp1 999 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  A  e.  ZZ )
6 prmz 12306 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
72, 6syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  ZZ )
85, 7gcdcomd 12168 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
9 simp3 1001 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  -.  P  ||  A )
10 coprm 12339 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
112, 5, 10syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
129, 11mpbid 147 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
138, 12eqtrd 2229 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
14 eulerth 12428 . . . . . . 7  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
154, 5, 13, 14syl3anc 1249 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
16 phiprm 12418 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
172, 16syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  1 ) )
18 nnm1nn0 9309 . . . . . . . . . 10  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
194, 18syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  NN0 )
2017, 19eqeltrd 2273 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  e. 
NN0 )
21 zexpcl 10665 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
225, 20, 21syl2anc 411 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
23 1zzd 9372 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  1  e.  ZZ )
24 moddvds 11983 . . . . . . 7  |-  ( ( P  e.  NN  /\  ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
254, 22, 23, 24syl3anc 1249 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
2615, 25mpbid 147 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  ||  ( ( A ^
( phi `  P
) )  -  1 ) )
2719nn0cnd 9323 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  CC )
28 2cnd 9082 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  CC )
29 2ap0 9102 . . . . . . . . . . . . 13  |-  2 #  0
3029a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2 #  0 )
3127, 28, 30divcanap1d 8837 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
3217, 31eqtr4d 2232 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( ( ( P  -  1 )  / 
2 )  x.  2 ) )
3332oveq2d 5941 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ (
( ( P  - 
1 )  /  2
)  x.  2 ) ) )
345zcnd 9468 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  A  e.  CC )
35 2nn0 9285 . . . . . . . . . . 11  |-  2  e.  NN0
3635a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  NN0 )
37 oddprm 12455 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
38373ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
3938nnnn0d 9321 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
4034, 36, 39expmuld 10787 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( ( P  -  1 )  /  2 )  x.  2 ) )  =  ( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4133, 40eqtrd 2229 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4241oveq1d 5940 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  1 ) )
43 sq1 10744 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4443oveq2i 5936 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) ) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  1 )
4542, 44eqtr4di 2247 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  (
1 ^ 2 ) ) )
46 zexpcl 10665 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
475, 39, 46syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
4847zcnd 9468 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
49 ax-1cn 7991 . . . . . . 7  |-  1  e.  CC
50 subsq 10757 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) ) ^
2 )  -  (
1 ^ 2 ) )  =  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) ) )
5148, 49, 50sylancl 413 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) ) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) )
5245, 51eqtrd 2229 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  x.  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
5326, 52breqtrd 4060 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  ||  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  x.  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
5447peano2zd 9470 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )
55 peano2zm 9383 . . . . . 6  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )
5647, 55syl 14 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )
57 euclemma 12341 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 )  e.  ZZ )  -> 
( P  ||  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  x.  ( ( A ^ ( ( P  -  1 )  /  2 ) )  -  1 ) )  <-> 
( P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  \/  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) ) )
582, 54, 56, 57syl3anc 1249 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  x.  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) )  <->  ( P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  \/  P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) ) )
5953, 58mpbid 147 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  \/  P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  -  1 ) ) )
60 dvdsval3 11975 . . . . 5  |-  ( ( P  e.  NN  /\  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  <->  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  =  0 ) )
614, 54, 60syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  0 ) )
62 2z 9373 . . . . . . 7  |-  2  e.  ZZ
6362a1i 9 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  ZZ )
64 moddvds 11983 . . . . . 6  |-  ( ( P  e.  NN  /\  ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  =  ( 2  mod  P )  <-> 
P  ||  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  2 ) ) )
654, 54, 63, 64syl3anc 1249 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( 2  mod  P )  <->  P  ||  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  2 ) ) )
66 zq 9719 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
6762, 66mp1i 10 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  QQ )
68 zq 9719 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  e.  QQ )
697, 68syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  QQ )
70 0le2 9099 . . . . . . . 8  |-  0  <_  2
7170a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  0  <_  2 )
72 eldifsni 3752 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
73723ad2ant2 1021 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  =/=  2 )
74 zapne 9419 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  ->  ( P #  2  <->  P  =/=  2 ) )
757, 62, 74sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P #  2  <->  P  =/=  2
) )
7673, 75mpbird 167 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P #  2 )
77 2re 9079 . . . . . . . . . 10  |-  2  e.  RR
7877a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  e.  RR )
794nnred 9022 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  RR )
80 prmuz2 12326 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
812, 80syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
82 eluzle 9632 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
8381, 82syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  <_  P )
8478, 79, 83leltapd 8685 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
2  <  P  <->  P #  2
) )
8576, 84mpbird 167 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  2  <  P )
86 modqid 10460 . . . . . . 7  |-  ( ( ( 2  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
2  /\  2  <  P ) )  ->  (
2  mod  P )  =  2 )
8767, 69, 71, 85, 86syl22anc 1250 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
2  mod  P )  =  2 )
8887eqeq2d 2208 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( 2  mod  P )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) )
89 df-2 9068 . . . . . . . 8  |-  2  =  ( 1  +  1 )
9089oveq2i 5936 . . . . . . 7  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  2 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  (
1  +  1 ) )
9149a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  1  e.  CC )
9248, 91, 91pnpcan2d 8394 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  ( 1  +  1 ) )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) )
9390, 92eqtrid 2241 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  2 )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 ) )
9493breq2d 4046 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  - 
2 )  <->  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) ) )
9565, 88, 943bitr3rd 219 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  - 
1 )  <->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) )
9661, 95orbi12d 794 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  \/  P  ||  (
( A ^ (
( P  -  1 )  /  2 ) )  -  1 ) )  <->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  0  \/  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  =  2 ) ) )
9759, 96mpbid 147 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
9854, 4zmodcld 10456 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  NN0 )
99 elprg 3643 . . 3  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  NN0  ->  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  <->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  \/  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2 ) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  e.  { 0 ,  2 }  <->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  \/  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2 ) ) )
10197, 100mpbird 167 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {csn 3623   {cpr 3624   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    <_ cle 8081    - cmin 8216   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   QQcq 9712    mod cmo 10433   ^cexp 10649    || cdvds 11971    gcd cgcd 12147   Primecprime 12302   phicphi 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-proddc 11735  df-dvds 11972  df-gcd 12148  df-prm 12303  df-phi 12406
This theorem is referenced by:  lgslem4  15352
  Copyright terms: Public domain W3C validator