ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1lgs Unicode version

Theorem m1lgs 15192
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime  P iff  P  ==  1 (mod  4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 9349 . . . . . . . . 9  |-  -u 1  e.  ZZ
2 oddprm 12397 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32nnnn0d 9293 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
4 zexpcl 10625 . . . . . . . . 9  |-  ( (
-u 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  e.  ZZ )
51, 3, 4sylancr 414 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1 ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
65peano2zd 9442 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
7 eldifi 3281 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
8 prmnn 12248 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
97, 8syl 14 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
106, 9zmodcld 10416 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  NN0 )
1110nn0cnd 9295 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  CC )
12 1cnd 8035 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  CC )
1311, 12, 12subaddd 8348 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
14 2z 9345 . . . . . . . . 9  |-  2  e.  ZZ
15 zq 9691 . . . . . . . . 9  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
1614, 15ax-mp 5 . . . . . . . 8  |-  2  e.  QQ
1716a1i 9 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  QQ )
18 prmz 12249 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
19 zq 9691 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  e.  QQ )
207, 18, 193syl 17 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  QQ )
21 0le2 9072 . . . . . . . 8  |-  0  <_  2
2221a1i 9 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
0  <_  2 )
23 oddprmgt2 12272 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
24 modqid 10420 . . . . . . 7  |-  ( ( ( 2  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
2  /\  2  <  P ) )  ->  (
2  mod  P )  =  2 )
2517, 20, 22, 23, 24syl22anc 1250 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  2 )
26 df-2 9041 . . . . . 6  |-  2  =  ( 1  +  1 )
2725, 26eqtrdi 2242 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  ( 1  +  1 ) )
2827eqeq1d 2202 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
29 2nn 9143 . . . . . . . 8  |-  2  e.  NN
302nnzd 9438 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
31 dvdsdc 11941 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ )  -> DECID  2  ||  ( ( P  -  1 )  /  2 ) )
3229, 30, 31sylancr 414 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  2  ||  ( ( P  - 
1 )  /  2
) )
33 eldifsni 3747 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
3433neneqd 2385 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  =  2
)
35 prmuz2 12269 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
367, 35syl 14 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
2 ) )
37 2prm 12265 . . . . . . . . . . . 12  |-  2  e.  Prime
38 dvdsprm 12275 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  Prime )  ->  ( P  ||  2  <->  P  = 
2 ) )
3936, 37, 38sylancl 413 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  2  <->  P  =  2 ) )
4034, 39mtbird 674 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  ||  2 )
4140adantr 276 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  2 )
42 1cnd 8035 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  1  e.  CC )
432adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
44 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  2  ||  ( ( P  -  1 )  / 
2 ) )
45 oexpneg 12018 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  -.  2  ||  ( ( P  -  1 )  /  2 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  = 
-u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4642, 43, 44, 45syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4743nnzd 9438 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
48 1exp 10639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
4947, 48syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
5049negeqd 8214 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -u (
1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
5146, 50eqtrd 2226 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
5251oveq1d 5933 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  ( -u 1  +  1 ) )
53 ax-1cn 7965 . . . . . . . . . . . . . 14  |-  1  e.  CC
54 neg1cn 9087 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
55 1pneg1e0 9093 . . . . . . . . . . . . . 14  |-  ( 1  +  -u 1 )  =  0
5653, 54, 55addcomli 8164 . . . . . . . . . . . . 13  |-  ( -u
1  +  1 )  =  0
5752, 56eqtrdi 2242 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  0 )
5857oveq2d 5934 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  ( 2  -  0 ) )
59 2cn 9053 . . . . . . . . . . . 12  |-  2  e.  CC
6059subid1i 8291 . . . . . . . . . . 11  |-  ( 2  -  0 )  =  2
6158, 60eqtrdi 2242 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  2 )
6261breq2d 4041 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )  <->  P  ||  2
) )
6341, 62mtbird 674 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) ) )
6463ex 115 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( P  - 
1 )  /  2
)  ->  -.  P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) ) ) )
65 condc 854 . . . . . . 7  |-  (DECID  2  ||  ( ( P  - 
1 )  /  2
)  ->  ( ( -.  2  ||  ( ( P  -  1 )  /  2 )  ->  -.  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) )  ->  ( P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) ) )
6632, 64, 65sylc 62 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) )
6714a1i 9 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  ZZ )
68 moddvds 11942 . . . . . . 7  |-  ( ( P  e.  NN  /\  2  e.  ZZ  /\  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
699, 67, 6, 68syl3anc 1249 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
70 4z 9347 . . . . . . . . 9  |-  4  e.  ZZ
71 4ne0 9080 . . . . . . . . 9  |-  4  =/=  0
72 nnm1nn0 9281 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
739, 72syl 14 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  NN0 )
7473nn0zd 9437 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  ZZ )
75 dvdsval2 11933 . . . . . . . . 9  |-  ( ( 4  e.  ZZ  /\  4  =/=  0  /\  ( P  -  1 )  e.  ZZ )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7670, 71, 74, 75mp3an12i 1352 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7773nn0cnd 9295 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  CC )
7859a1i 9 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  CC )
7929a1i 9 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  NN )
8079nnap0d 9028 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2 #  0 )
8177, 78, 78, 80, 80divdivap1d 8841 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  ( 2  x.  2 ) ) )
82 2t2e4 9136 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
8382oveq2i 5929 . . . . . . . . . 10  |-  ( ( P  -  1 )  /  ( 2  x.  2 ) )  =  ( ( P  - 
1 )  /  4
)
8481, 83eqtrdi 2242 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  4 ) )
8584eleq1d 2262 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( P  -  1 )  /  2 )  / 
2 )  e.  ZZ  <->  ( ( P  -  1 )  /  4 )  e.  ZZ ) )
8676, 85bitr4d 191 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
87 2ne0 9074 . . . . . . . 8  |-  2  =/=  0
88 dvdsval2 11933 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
( P  -  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
8914, 87, 30, 88mp3an12i 1352 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
9086, 89bitr4d 191 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <->  2  ||  ( ( P  -  1 )  /  2 ) ) )
9166, 69, 903imtr4d 203 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  ->  4  ||  ( P  -  1
) ) )
9254a1i 9 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  e.  CC )
93 neg1ap0 9091 . . . . . . . . . . . 12  |-  -u 1 #  0
9493a1i 9 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1 #  0 )
9514a1i 9 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  e.  ZZ )
9686biimpa 296 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( (
( P  -  1 )  /  2 )  /  2 )  e.  ZZ )
97 expmulzap 10656 . . . . . . . . . . 11  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  (
2  e.  ZZ  /\  ( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
9892, 94, 95, 96, 97syl22anc 1250 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
992nncnd 8996 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  CC )
10099, 78, 80divcanap2d 8811 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  x.  (
( ( P  - 
1 )  /  2
)  /  2 ) )  =  ( ( P  -  1 )  /  2 ) )
101100adantr 276 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  x.  ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  ( ( P  - 
1 )  /  2
) )
102101oveq2d 5934 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( -u 1 ^ ( ( P  - 
1 )  /  2
) ) )
103 neg1sqe1 10705 . . . . . . . . . . . 12  |-  ( -u
1 ^ 2 )  =  1
104103oveq1i 5928 . . . . . . . . . . 11  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  ( 1 ^ ( ( ( P  -  1 )  / 
2 )  /  2
) )
105 1exp 10639 . . . . . . . . . . . 12  |-  ( ( ( ( P  - 
1 )  /  2
)  /  2 )  e.  ZZ  ->  (
1 ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  1 )
10696, 105syl 14 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 1 ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
107104, 106eqtrid 2238 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
10898, 102, 1073eqtr3d 2234 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  =  1 )
109108oveq1d 5933 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  =  ( 1  +  1 ) )
11026, 109eqtr4id 2245 . . . . . . 7  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  =  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )
111110oveq1d 5933 . . . . . 6  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  mod  P )  =  ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
112111ex 115 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  ->  ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
11391, 112impbid 129 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  4  ||  ( P  -  1 ) ) )
11413, 28, 1133bitr2d 216 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  4  ||  ( P  -  1 ) ) )
115 lgsval3 15134 . . . . 5  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -u 1  /L P )  =  ( ( ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 ) )
1161, 115mpan 424 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1  /L
P )  =  ( ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
117116eqeq1d 2202 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1 ) )
118 4nn 9145 . . . . 5  |-  4  e.  NN
119118a1i 9 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  NN )
1207, 18syl 14 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
121 1zzd 9344 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
122 moddvds 11942 . . . 4  |-  ( ( 4  e.  NN  /\  P  e.  ZZ  /\  1  e.  ZZ )  ->  (
( P  mod  4
)  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1
) ) )
123119, 120, 121, 122syl3anc 1249 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  4 )  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1 ) ) )
124114, 117, 1233bitr4d 220 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  ( 1  mod  4 ) ) )
125 1z 9343 . . . . 5  |-  1  e.  ZZ
126 zq 9691 . . . . 5  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
127125, 126ax-mp 5 . . . 4  |-  1  e.  QQ
128 zq 9691 . . . . 5  |-  ( 4  e.  ZZ  ->  4  e.  QQ )
12970, 128ax-mp 5 . . . 4  |-  4  e.  QQ
130 0le1 8500 . . . 4  |-  0  <_  1
131 1lt4 9156 . . . 4  |-  1  <  4
132 modqid 10420 . . . 4  |-  ( ( ( 1  e.  QQ  /\  4  e.  QQ )  /\  ( 0  <_ 
1  /\  1  <  4 ) )  -> 
( 1  mod  4
)  =  1 )
133127, 129, 130, 131, 132mp4an 427 . . 3  |-  ( 1  mod  4 )  =  1
134133eqeq2i 2204 . 2  |-  ( ( P  mod  4 )  =  ( 1  mod  4 )  <->  ( P  mod  4 )  =  1 )
135124, 134bitrdi 196 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364    \ cdif 3150   {csn 3618   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   -ucneg 8191   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   4c4 9035   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684    mod cmo 10393   ^cexp 10609    || cdvds 11930   Primecprime 12245    /Lclgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator