ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1lgs Unicode version

Theorem m1lgs 15595
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime  P iff  P  ==  1 (mod  4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 9406 . . . . . . . . 9  |-  -u 1  e.  ZZ
2 oddprm 12615 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32nnnn0d 9350 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
4 zexpcl 10701 . . . . . . . . 9  |-  ( (
-u 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  e.  ZZ )
51, 3, 4sylancr 414 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1 ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
65peano2zd 9500 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
7 eldifi 3295 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
8 prmnn 12465 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
97, 8syl 14 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
106, 9zmodcld 10492 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  NN0 )
1110nn0cnd 9352 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  CC )
12 1cnd 8090 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  CC )
1311, 12, 12subaddd 8403 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
14 2z 9402 . . . . . . . . 9  |-  2  e.  ZZ
15 zq 9749 . . . . . . . . 9  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
1614, 15ax-mp 5 . . . . . . . 8  |-  2  e.  QQ
1716a1i 9 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  QQ )
18 prmz 12466 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
19 zq 9749 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  e.  QQ )
207, 18, 193syl 17 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  QQ )
21 0le2 9128 . . . . . . . 8  |-  0  <_  2
2221a1i 9 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
0  <_  2 )
23 oddprmgt2 12489 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
24 modqid 10496 . . . . . . 7  |-  ( ( ( 2  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
2  /\  2  <  P ) )  ->  (
2  mod  P )  =  2 )
2517, 20, 22, 23, 24syl22anc 1251 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  2 )
26 df-2 9097 . . . . . 6  |-  2  =  ( 1  +  1 )
2725, 26eqtrdi 2254 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  ( 1  +  1 ) )
2827eqeq1d 2214 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
29 2nn 9200 . . . . . . . 8  |-  2  e.  NN
302nnzd 9496 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
31 dvdsdc 12142 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ )  -> DECID  2  ||  ( ( P  -  1 )  /  2 ) )
3229, 30, 31sylancr 414 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  2  ||  ( ( P  - 
1 )  /  2
) )
33 eldifsni 3762 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
3433neneqd 2397 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  =  2
)
35 prmuz2 12486 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
367, 35syl 14 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
2 ) )
37 2prm 12482 . . . . . . . . . . . 12  |-  2  e.  Prime
38 dvdsprm 12492 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  Prime )  ->  ( P  ||  2  <->  P  = 
2 ) )
3936, 37, 38sylancl 413 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  2  <->  P  =  2 ) )
4034, 39mtbird 675 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  ||  2 )
4140adantr 276 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  2 )
42 1cnd 8090 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  1  e.  CC )
432adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
44 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  2  ||  ( ( P  -  1 )  / 
2 ) )
45 oexpneg 12221 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  -.  2  ||  ( ( P  -  1 )  /  2 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  = 
-u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4642, 43, 44, 45syl3anc 1250 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4743nnzd 9496 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
48 1exp 10715 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
4947, 48syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
5049negeqd 8269 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -u (
1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
5146, 50eqtrd 2238 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
5251oveq1d 5961 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  ( -u 1  +  1 ) )
53 ax-1cn 8020 . . . . . . . . . . . . . 14  |-  1  e.  CC
54 neg1cn 9143 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
55 1pneg1e0 9149 . . . . . . . . . . . . . 14  |-  ( 1  +  -u 1 )  =  0
5653, 54, 55addcomli 8219 . . . . . . . . . . . . 13  |-  ( -u
1  +  1 )  =  0
5752, 56eqtrdi 2254 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  0 )
5857oveq2d 5962 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  ( 2  -  0 ) )
59 2cn 9109 . . . . . . . . . . . 12  |-  2  e.  CC
6059subid1i 8346 . . . . . . . . . . 11  |-  ( 2  -  0 )  =  2
6158, 60eqtrdi 2254 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  2 )
6261breq2d 4057 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )  <->  P  ||  2
) )
6341, 62mtbird 675 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) ) )
6463ex 115 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( P  - 
1 )  /  2
)  ->  -.  P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) ) ) )
65 condc 855 . . . . . . 7  |-  (DECID  2  ||  ( ( P  - 
1 )  /  2
)  ->  ( ( -.  2  ||  ( ( P  -  1 )  /  2 )  ->  -.  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) )  ->  ( P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) ) )
6632, 64, 65sylc 62 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) )
6714a1i 9 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  ZZ )
68 moddvds 12143 . . . . . . 7  |-  ( ( P  e.  NN  /\  2  e.  ZZ  /\  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
699, 67, 6, 68syl3anc 1250 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
70 4z 9404 . . . . . . . . 9  |-  4  e.  ZZ
71 4ne0 9136 . . . . . . . . 9  |-  4  =/=  0
72 nnm1nn0 9338 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
739, 72syl 14 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  NN0 )
7473nn0zd 9495 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  ZZ )
75 dvdsval2 12134 . . . . . . . . 9  |-  ( ( 4  e.  ZZ  /\  4  =/=  0  /\  ( P  -  1 )  e.  ZZ )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7670, 71, 74, 75mp3an12i 1354 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7773nn0cnd 9352 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  CC )
7859a1i 9 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  CC )
7929a1i 9 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  NN )
8079nnap0d 9084 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2 #  0 )
8177, 78, 78, 80, 80divdivap1d 8897 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  ( 2  x.  2 ) ) )
82 2t2e4 9193 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
8382oveq2i 5957 . . . . . . . . . 10  |-  ( ( P  -  1 )  /  ( 2  x.  2 ) )  =  ( ( P  - 
1 )  /  4
)
8481, 83eqtrdi 2254 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  4 ) )
8584eleq1d 2274 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( P  -  1 )  /  2 )  / 
2 )  e.  ZZ  <->  ( ( P  -  1 )  /  4 )  e.  ZZ ) )
8676, 85bitr4d 191 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
87 2ne0 9130 . . . . . . . 8  |-  2  =/=  0
88 dvdsval2 12134 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
( P  -  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
8914, 87, 30, 88mp3an12i 1354 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
9086, 89bitr4d 191 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <->  2  ||  ( ( P  -  1 )  /  2 ) ) )
9166, 69, 903imtr4d 203 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  ->  4  ||  ( P  -  1
) ) )
9254a1i 9 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  e.  CC )
93 neg1ap0 9147 . . . . . . . . . . . 12  |-  -u 1 #  0
9493a1i 9 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1 #  0 )
9514a1i 9 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  e.  ZZ )
9686biimpa 296 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( (
( P  -  1 )  /  2 )  /  2 )  e.  ZZ )
97 expmulzap 10732 . . . . . . . . . . 11  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  (
2  e.  ZZ  /\  ( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
9892, 94, 95, 96, 97syl22anc 1251 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
992nncnd 9052 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  CC )
10099, 78, 80divcanap2d 8867 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  x.  (
( ( P  - 
1 )  /  2
)  /  2 ) )  =  ( ( P  -  1 )  /  2 ) )
101100adantr 276 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  x.  ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  ( ( P  - 
1 )  /  2
) )
102101oveq2d 5962 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( -u 1 ^ ( ( P  - 
1 )  /  2
) ) )
103 neg1sqe1 10781 . . . . . . . . . . . 12  |-  ( -u
1 ^ 2 )  =  1
104103oveq1i 5956 . . . . . . . . . . 11  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  ( 1 ^ ( ( ( P  -  1 )  / 
2 )  /  2
) )
105 1exp 10715 . . . . . . . . . . . 12  |-  ( ( ( ( P  - 
1 )  /  2
)  /  2 )  e.  ZZ  ->  (
1 ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  1 )
10696, 105syl 14 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 1 ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
107104, 106eqtrid 2250 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
10898, 102, 1073eqtr3d 2246 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  =  1 )
109108oveq1d 5961 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  =  ( 1  +  1 ) )
11026, 109eqtr4id 2257 . . . . . . 7  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  =  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )
111110oveq1d 5961 . . . . . 6  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  mod  P )  =  ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
112111ex 115 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  ->  ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
11391, 112impbid 129 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  4  ||  ( P  -  1 ) ) )
11413, 28, 1133bitr2d 216 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  4  ||  ( P  -  1 ) ) )
115 lgsval3 15528 . . . . 5  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -u 1  /L P )  =  ( ( ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 ) )
1161, 115mpan 424 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1  /L
P )  =  ( ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
117116eqeq1d 2214 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1 ) )
118 4nn 9202 . . . . 5  |-  4  e.  NN
119118a1i 9 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  NN )
1207, 18syl 14 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
121 1zzd 9401 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
122 moddvds 12143 . . . 4  |-  ( ( 4  e.  NN  /\  P  e.  ZZ  /\  1  e.  ZZ )  ->  (
( P  mod  4
)  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1
) ) )
123119, 120, 121, 122syl3anc 1250 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  4 )  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1 ) ) )
124114, 117, 1233bitr4d 220 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  ( 1  mod  4 ) ) )
125 1z 9400 . . . . 5  |-  1  e.  ZZ
126 zq 9749 . . . . 5  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
127125, 126ax-mp 5 . . . 4  |-  1  e.  QQ
128 zq 9749 . . . . 5  |-  ( 4  e.  ZZ  ->  4  e.  QQ )
12970, 128ax-mp 5 . . . 4  |-  4  e.  QQ
130 0le1 8556 . . . 4  |-  0  <_  1
131 1lt4 9213 . . . 4  |-  1  <  4
132 modqid 10496 . . . 4  |-  ( ( ( 1  e.  QQ  /\  4  e.  QQ )  /\  ( 0  <_ 
1  /\  1  <  4 ) )  -> 
( 1  mod  4
)  =  1 )
133127, 129, 130, 131, 132mp4an 427 . . 3  |-  ( 1  mod  4 )  =  1
134133eqeq2i 2216 . 2  |-  ( ( P  mod  4 )  =  ( 1  mod  4 )  <->  ( P  mod  4 )  =  1 )
135124, 134bitrdi 196 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376    \ cdif 3163   {csn 3633   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245   -ucneg 8246   # cap 8656    / cdiv 8747   NNcn 9038   2c2 9089   4c4 9091   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   QQcq 9742    mod cmo 10469   ^cexp 10685    || cdvds 12131   Primecprime 12462    /Lclgs 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-2o 6505  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-proddc 11895  df-dvds 12132  df-gcd 12308  df-prm 12463  df-phi 12566  df-pc 12641  df-lgs 15508
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator