ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elima3 Unicode version

Theorem elima3 4995
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
elima.1  |-  A  e. 
_V
Assertion
Ref Expression
elima3  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  <. x ,  A >.  e.  B ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elima3
StepHypRef Expression
1 elima.1 . . 3  |-  A  e. 
_V
21elima2 4994 . 2  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  x B A ) )
3 df-br 4019 . . . 4  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
43anbi2i 457 . . 3  |-  ( ( x  e.  C  /\  x B A )  <->  ( x  e.  C  /\  <. x ,  A >.  e.  B
) )
54exbii 1616 . 2  |-  ( E. x ( x  e.  C  /\  x B A )  <->  E. x
( x  e.  C  /\  <. x ,  A >.  e.  B ) )
62, 5bitri 184 1  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  <. x ,  A >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2160   _Vcvv 2752   <.cop 3610   class class class wbr 4018   "cima 4647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657
This theorem is referenced by:  cnvresima  5136  imaiun  5782
  Copyright terms: Public domain W3C validator