ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvresima Unicode version

Theorem cnvresima 5136
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)

Proof of Theorem cnvresima
Dummy variables  t  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . 4  |-  t  e. 
_V
21elima3 4995 . . 3  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' ( F  |`  A ) ) )
31elima3 4995 . . . . 5  |-  ( t  e.  ( `' F " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F ) )
43anbi1i 458 . . . 4  |-  ( ( t  e.  ( `' F " B )  /\  t  e.  A
)  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
5 elin 3333 . . . 4  |-  ( t  e.  ( ( `' F " B )  i^i  A )  <->  ( t  e.  ( `' F " B )  /\  t  e.  A ) )
6 vex 2755 . . . . . . . . . 10  |-  s  e. 
_V
76, 1opelcnv 4827 . . . . . . . . 9  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  <. t ,  s >.  e.  ( F  |`  A ) )
86opelres 4930 . . . . . . . . . 10  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. t ,  s
>.  e.  F  /\  t  e.  A ) )
96, 1opelcnv 4827 . . . . . . . . . . 11  |-  ( <.
s ,  t >.  e.  `' F  <->  <. t ,  s
>.  e.  F )
109anbi1i 458 . . . . . . . . . 10  |-  ( (
<. s ,  t >.  e.  `' F  /\  t  e.  A )  <->  ( <. t ,  s >.  e.  F  /\  t  e.  A
) )
118, 10bitr4i 187 . . . . . . . . 9  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. s ,  t
>.  e.  `' F  /\  t  e.  A )
)
127, 11bitri 184 . . . . . . . 8  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  ( <. s ,  t >.  e.  `' F  /\  t  e.  A
) )
1312anbi2i 457 . . . . . . 7  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( s  e.  B  /\  ( <. s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
14 anass 401 . . . . . . 7  |-  ( ( ( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
)  <->  ( s  e.  B  /\  ( <.
s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
1513, 14bitr4i 187 . . . . . 6  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( (
s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1615exbii 1616 . . . . 5  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  E. s ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
17 19.41v 1914 . . . . 5  |-  ( E. s ( ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A )  <->  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1816, 17bitri 184 . . . 4  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
194, 5, 183bitr4ri 213 . . 3  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
202, 19bitri 184 . 2  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
2120eqriv 2186 1  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160    i^i cin 3143   <.cop 3610   `'ccnv 4643    |` cres 4646   "cima 4647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657
This theorem is referenced by:  cnrest  14212
  Copyright terms: Public domain W3C validator