ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elima3 GIF version

Theorem elima3 5026
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima3 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima3
StepHypRef Expression
1 elima.1 . . 3 𝐴 ∈ V
21elima2 5025 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
3 df-br 4044 . . . 4 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
43anbi2i 457 . . 3 ((𝑥𝐶𝑥𝐵𝐴) ↔ (𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
54exbii 1627 . 2 (∃𝑥(𝑥𝐶𝑥𝐵𝐴) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
62, 5bitri 184 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1514  wcel 2175  Vcvv 2771  cop 3635   class class class wbr 4043  cima 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686
This theorem is referenced by:  cnvresima  5169  imaiun  5819
  Copyright terms: Public domain W3C validator