ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrng Unicode version

Theorem elrng 4858
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrng  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elrng
StepHypRef Expression
1 elrn2g 4857 . 2  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
2 df-br 4035 . . 3  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
32exbii 1619 . 2  |-  ( E. x  x B A  <->  E. x <. x ,  A >.  e.  B )
41, 3bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1506    e. wcel 2167   <.cop 3626   class class class wbr 4034   ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  relelrnb  4905
  Copyright terms: Public domain W3C validator