ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn2g Unicode version

Theorem elrn2g 4852
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrn2g  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elrn2g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3805 . . . 4  |-  ( y  =  A  ->  <. x ,  y >.  =  <. x ,  A >. )
21eleq1d 2262 . . 3  |-  ( y  =  A  ->  ( <. x ,  y >.  e.  B  <->  <. x ,  A >.  e.  B ) )
32exbidv 1836 . 2  |-  ( y  =  A  ->  ( E. x <. x ,  y
>.  e.  B  <->  E. x <. x ,  A >.  e.  B ) )
4 dfrn3 4851 . 2  |-  ran  B  =  { y  |  E. x <. x ,  y
>.  e.  B }
53, 4elab2g 2907 1  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3621   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  elrng  4853  fvelrn  5689  fo2ndf  6280
  Copyright terms: Public domain W3C validator