ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrnb Unicode version

Theorem relelrnb 4916
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
relelrnb  |-  ( Rel 
R  ->  ( A  e.  ran  R  <->  E. x  x R A ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem relelrnb
StepHypRef Expression
1 elrng 4869 . . 3  |-  ( A  e.  ran  R  -> 
( A  e.  ran  R  <->  E. x  x R A ) )
21ibi 176 . 2  |-  ( A  e.  ran  R  ->  E. x  x R A )
3 relelrn 4914 . . . 4  |-  ( ( Rel  R  /\  x R A )  ->  A  e.  ran  R )
43ex 115 . . 3  |-  ( Rel 
R  ->  ( x R A  ->  A  e. 
ran  R ) )
54exlimdv 1842 . 2  |-  ( Rel 
R  ->  ( E. x  x R A  ->  A  e.  ran  R ) )
62, 5impbid2 143 1  |-  ( Rel 
R  ->  ( A  e.  ran  R  <->  E. x  x R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1515    e. wcel 2176   class class class wbr 4044   ran crn 4676   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator