Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrpii | Unicode version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | |
elrpi.2 |
Ref | Expression |
---|---|
elrpii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 | |
2 | elrpi.2 | . 2 | |
3 | elrp 9612 | . 2 | |
4 | 1, 2, 3 | mpbir2an 937 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 class class class wbr 3989 cr 7773 cc0 7774 clt 7954 crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-rp 9611 |
This theorem is referenced by: 1rp 9614 2rp 9615 3rp 9616 resqrexlemnm 10982 resqrexlemga 10987 epr 11744 pirp 13504 coseq0negpitopi 13551 pigt3 13559 |
Copyright terms: Public domain | W3C validator |