ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrpii Unicode version

Theorem elrpii 9780
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
Hypotheses
Ref Expression
elrpi.1  |-  A  e.  RR
elrpi.2  |-  0  <  A
Assertion
Ref Expression
elrpii  |-  A  e.  RR+

Proof of Theorem elrpii
StepHypRef Expression
1 elrpi.1 . 2  |-  A  e.  RR
2 elrpi.2 . 2  |-  0  <  A
3 elrp 9779 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
41, 2, 3mpbir2an 945 1  |-  A  e.  RR+
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   class class class wbr 4045   RRcr 7926   0cc0 7927    < clt 8109   RR+crp 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-rp 9778
This theorem is referenced by:  1rp  9781  2rp  9782  3rp  9783  resqrexlemnm  11362  resqrexlemga  11367  epr  12126  pirp  15294  coseq0negpitopi  15341  pigt3  15349
  Copyright terms: Public domain W3C validator