ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrpii Unicode version

Theorem elrpii 9625
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
Hypotheses
Ref Expression
elrpi.1  |-  A  e.  RR
elrpi.2  |-  0  <  A
Assertion
Ref Expression
elrpii  |-  A  e.  RR+

Proof of Theorem elrpii
StepHypRef Expression
1 elrpi.1 . 2  |-  A  e.  RR
2 elrpi.2 . 2  |-  0  <  A
3 elrp 9624 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
41, 2, 3mpbir2an 942 1  |-  A  e.  RR+
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   class class class wbr 3998   RRcr 7785   0cc0 7786    < clt 7966   RR+crp 9622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-rp 9623
This theorem is referenced by:  1rp  9626  2rp  9627  3rp  9628  resqrexlemnm  10993  resqrexlemga  10998  epr  11755  pirp  13761  coseq0negpitopi  13808  pigt3  13816
  Copyright terms: Public domain W3C validator