| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpii | Unicode version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 |
|
| elrpi.2 |
|
| Ref | Expression |
|---|---|
| elrpii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 |
. 2
| |
| 2 | elrpi.2 |
. 2
| |
| 3 | elrp 9779 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-rp 9778 |
| This theorem is referenced by: 1rp 9781 2rp 9782 3rp 9783 resqrexlemnm 11362 resqrexlemga 11367 epr 12126 pirp 15294 coseq0negpitopi 15341 pigt3 15349 |
| Copyright terms: Public domain | W3C validator |