Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrpii | Unicode version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | |
elrpi.2 |
Ref | Expression |
---|---|
elrpii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 | |
2 | elrpi.2 | . 2 | |
3 | elrp 9624 | . 2 | |
4 | 1, 2, 3 | mpbir2an 942 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 class class class wbr 3998 cr 7785 cc0 7786 clt 7966 crp 9622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-rp 9623 |
This theorem is referenced by: 1rp 9626 2rp 9627 3rp 9628 resqrexlemnm 10993 resqrexlemga 10998 epr 11755 pirp 13761 coseq0negpitopi 13808 pigt3 13816 |
Copyright terms: Public domain | W3C validator |