| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1rp | Unicode version | ||
| Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| Ref | Expression |
|---|---|
| 1rp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8145 |
. 2
| |
| 2 | 0lt1 8273 |
. 2
| |
| 3 | 1, 2 | elrpii 9852 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0lt1 8105 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-rp 9850 |
| This theorem is referenced by: rpreccl 9876 rpexpcl 10780 caubnd2 11628 climcaucn 11862 fprodrpcl 12122 isprm6 12669 unirnblps 15096 unirnbl 15097 mopnex 15179 tgioo 15228 cncfmptc 15270 dveflem 15400 log1 15540 logrpap0b 15550 rplogcl 15553 logge0 15554 logge0b 15564 loggt0b 15565 1cxp 15574 rplogb1 15622 logbrec 15634 logbgcd1irraplemexp 15642 iooref1o 16402 |
| Copyright terms: Public domain | W3C validator |