| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1rp | Unicode version | ||
| Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| Ref | Expression |
|---|---|
| 1rp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8073 |
. 2
| |
| 2 | 0lt1 8201 |
. 2
| |
| 3 | 1, 2 | elrpii 9780 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-0lt1 8033 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-rp 9778 |
| This theorem is referenced by: rpreccl 9804 rpexpcl 10705 caubnd2 11461 climcaucn 11695 fprodrpcl 11955 isprm6 12502 unirnblps 14927 unirnbl 14928 mopnex 15010 tgioo 15059 cncfmptc 15101 dveflem 15231 log1 15371 logrpap0b 15381 rplogcl 15384 logge0 15385 logge0b 15395 loggt0b 15396 1cxp 15405 rplogb1 15453 logbrec 15465 logbgcd1irraplemexp 15473 iooref1o 16010 |
| Copyright terms: Public domain | W3C validator |