ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1rp Unicode version

Theorem 1rp 9199
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
Assertion
Ref Expression
1rp  |-  1  e.  RR+

Proof of Theorem 1rp
StepHypRef Expression
1 1re 7548 . 2  |-  1  e.  RR
2 0lt1 7671 . 2  |-  0  <  1
31, 2elrpii 9198 1  |-  1  e.  RR+
Colors of variables: wff set class
Syntax hints:    e. wcel 1439   1c1 7412   RR+crp 9195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1re 7500  ax-addrcl 7503  ax-0lt1 7512  ax-rnegex 7515
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4458  df-pnf 7585  df-mnf 7586  df-ltxr 7588  df-rp 9196
This theorem is referenced by:  rpreccl  9221  rpexpcl  10035  caubnd2  10611  climcaucn  10801  isprm6  11465
  Copyright terms: Public domain W3C validator