Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1rp | Unicode version |
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
Ref | Expression |
---|---|
1rp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7919 | . 2 | |
2 | 0lt1 8046 | . 2 | |
3 | 1, 2 | elrpii 9613 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 c1 7775 crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-rp 9611 |
This theorem is referenced by: rpreccl 9637 rpexpcl 10495 caubnd2 11081 climcaucn 11314 fprodrpcl 11574 isprm6 12101 unirnblps 13216 unirnbl 13217 mopnex 13299 tgioo 13340 cncfmptc 13376 dveflem 13481 log1 13581 logrpap0b 13591 rplogcl 13594 logge0 13595 logge0b 13605 loggt0b 13606 1cxp 13615 rplogb1 13660 logbrec 13672 logbgcd1irraplemexp 13680 iooref1o 14066 |
Copyright terms: Public domain | W3C validator |