Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1rp | Unicode version |
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
Ref | Expression |
---|---|
1rp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7894 | . 2 | |
2 | 0lt1 8021 | . 2 | |
3 | 1, 2 | elrpii 9588 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 c1 7750 crp 9585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-pnf 7931 df-mnf 7932 df-ltxr 7934 df-rp 9586 |
This theorem is referenced by: rpreccl 9612 rpexpcl 10470 caubnd2 11055 climcaucn 11288 fprodrpcl 11548 isprm6 12075 unirnblps 13022 unirnbl 13023 mopnex 13105 tgioo 13146 cncfmptc 13182 dveflem 13287 log1 13387 logrpap0b 13397 rplogcl 13400 logge0 13401 logge0b 13411 loggt0b 13412 1cxp 13421 rplogb1 13466 logbrec 13478 logbgcd1irraplemexp 13486 iooref1o 13873 |
Copyright terms: Public domain | W3C validator |