Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrpii | GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 9591 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 932 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 < clt 7933 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-rp 9590 |
This theorem is referenced by: 1rp 9593 2rp 9594 3rp 9595 resqrexlemnm 10960 resqrexlemga 10965 epr 11722 pirp 13350 coseq0negpitopi 13397 pigt3 13405 |
Copyright terms: Public domain | W3C validator |