ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrpii GIF version

Theorem elrpii 9627
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
Hypotheses
Ref Expression
elrpi.1 𝐴 ∈ ℝ
elrpi.2 0 < 𝐴
Assertion
Ref Expression
elrpii 𝐴 ∈ ℝ+

Proof of Theorem elrpii
StepHypRef Expression
1 elrpi.1 . 2 𝐴 ∈ ℝ
2 elrpi.2 . 2 0 < 𝐴
3 elrp 9626 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3mpbir2an 942 1 𝐴 ∈ ℝ+
Colors of variables: wff set class
Syntax hints:  wcel 2146   class class class wbr 3998  cr 7785  0cc0 7786   < clt 7966  +crp 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-rp 9625
This theorem is referenced by:  1rp  9628  2rp  9629  3rp  9630  resqrexlemnm  10995  resqrexlemga  11000  epr  11757  pirp  13781  coseq0negpitopi  13828  pigt3  13836
  Copyright terms: Public domain W3C validator