![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrpii | GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 9031 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 884 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 class class class wbr 3811 ℝcr 7252 0cc0 7253 < clt 7425 ℝ+crp 9029 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rab 2362 df-v 2614 df-un 2988 df-sn 3428 df-pr 3429 df-op 3431 df-br 3812 df-rp 9030 |
This theorem is referenced by: 1rp 9033 2rp 9034 resqrexlemnm 10278 resqrexlemga 10283 |
Copyright terms: Public domain | W3C validator |