ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrpii GIF version

Theorem elrpii 9198
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
Hypotheses
Ref Expression
elrpi.1 𝐴 ∈ ℝ
elrpi.2 0 < 𝐴
Assertion
Ref Expression
elrpii 𝐴 ∈ ℝ+

Proof of Theorem elrpii
StepHypRef Expression
1 elrpi.1 . 2 𝐴 ∈ ℝ
2 elrpi.2 . 2 0 < 𝐴
3 elrp 9197 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3mpbir2an 889 1 𝐴 ∈ ℝ+
Colors of variables: wff set class
Syntax hints:  wcel 1439   class class class wbr 3851  cr 7410  0cc0 7411   < clt 7583  +crp 9195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rab 2369  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-rp 9196
This theorem is referenced by:  1rp  9199  2rp  9200  resqrexlemnm  10512  resqrexlemga  10517  epr  11130
  Copyright terms: Public domain W3C validator