ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga Unicode version

Theorem resqrexlemga 11207
Description: Lemma for resqrex 11210. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemga  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
j, F, k    x, F, k    e, j, k,
ph    ph, y, z
Allowed substitution hints:    ph( x, i)    A( x, e, i, j, k)    F( y, z, e, i)    G( x, y, z, e, i, j, k)    L( x, y, z, e, i, j, k)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11191 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
54adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
6 1nn 9020 . . . . . . . . . 10  |-  1  e.  NN
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
85, 7ffvelcdmd 5701 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
9 2z 9373 . . . . . . . . 9  |-  2  e.  ZZ
109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  2  e.  ZZ )
118, 10rpexpcld 10808 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
12 simpr 110 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1311, 12rpdivcld 9808 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR+ )
1413rpred 9790 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
15 1red 8060 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  RR )
1614, 15readdcld 8075 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
17 arch 9265 . . . 4  |-  ( ( ( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  e.  RR  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
1816, 17syl 14 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
19 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  NN )
20 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  j )
)
21 eluznn 9693 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
2219, 20, 21syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  NN )
23 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  ph )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ph )
2524, 4syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  F : NN
--> RR+ )
2625, 22ffvelcdmd 5701 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  RR+ )
279a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  2  e.  ZZ )
2826, 27rpexpcld 10808 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR+ )
29 fveq2 5561 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
3029oveq1d 5940 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
31 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
3230, 31fvmptg 5640 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
3322, 28, 32syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  =  ( ( F `  k
) ^ 2 ) )
3428rpred 9790 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR )
3524, 2syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  e.  RR )
3634, 35resubcld 8426 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  e.  RR )
3711ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
3837rpred 9790 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
39 4re 9086 . . . . . . . . . . . . . 14  |-  4  e.  RR
40 4pos 9106 . . . . . . . . . . . . . 14  |-  0  <  4
4139, 40elrpii 9750 . . . . . . . . . . . . 13  |-  4  e.  RR+
4241a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR+ )
43 nnm1nn0 9309 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
4422, 43syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e. 
NN0 )
4544nn0zd 9465 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  ZZ )
4642, 45rpexpcld 10808 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
4738, 46rerpdivcld 9822 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
4812ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR+ )
4948rpred 9790 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR )
501, 2, 3resqrexlemcalc3 11200 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5124, 22, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5214ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
5322nnred 9022 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  RR )
54 1red 8060 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
5553, 54resubcld 8426 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  RR )
5639a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR )
5756, 44reexpcld 10801 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR )
5816ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
5919nnred 9022 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  RR )
60 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
j )
61 eluzle 9632 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
6261adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  <_  k )
6358, 59, 53, 60, 62ltletrd 8469 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
k )
6452, 54, 53ltaddsubd 8591 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  k  <->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) ) )
6563, 64mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) )
66 4z 9375 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
67 2re 9079 . . . . . . . . . . . . . . 15  |-  2  e.  RR
68 2lt4 9183 . . . . . . . . . . . . . . 15  |-  2  <  4
6967, 39, 68ltleii 8148 . . . . . . . . . . . . . 14  |-  2  <_  4
70 eluz2 9626 . . . . . . . . . . . . . 14  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  4  e.  ZZ  /\  2  <_ 
4 ) )
719, 66, 69, 70mpbir3an 1181 . . . . . . . . . . . . 13  |-  4  e.  ( ZZ>= `  2 )
72 bernneq3 10773 . . . . . . . . . . . . 13  |-  ( ( 4  e.  ( ZZ>= ` 
2 )  /\  (
k  -  1 )  e.  NN0 )  -> 
( k  -  1 )  <  ( 4 ^ ( k  - 
1 ) ) )
7371, 44, 72sylancr 414 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  < 
( 4 ^ (
k  -  1 ) ) )
7452, 55, 57, 65, 73lttrd 8171 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( 4 ^ (
k  -  1 ) ) )
7538, 48, 46, 74ltdiv23d 9851 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  < 
e )
7636, 47, 49, 51, 75lelttrd 8170 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  < 
e )
7734, 35, 49ltsubadd2d 8589 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) ^ 2 )  -  A )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) ) )
7876, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) )
7933, 78eqbrtrd 4056 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  ( A  +  e )
)
8033, 28eqeltrd 2273 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR+ )
8180rpred 9790 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR )
8281, 49readdcld 8075 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  +  e )  e.  RR )
831, 2, 3resqrexlemover 11194 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  < 
( ( F `  k ) ^ 2 ) )
8424, 22, 83syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( F `  k
) ^ 2 ) )
8584, 33breqtrrd 4062 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( G `  k ) )
8681, 48ltaddrpd 9824 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  (
( G `  k
)  +  e ) )
8735, 81, 82, 85, 86lttrd 8171 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( G `  k
)  +  e ) )
8879, 87jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  <  ( A  +  e )  /\  A  < 
( ( G `  k )  +  e ) ) )
8988ralrimiva 2570 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  A. k  e.  (
ZZ>= `  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) )
9089ex 115 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) ) )
9190reximdva 2599 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) ) )
9218, 91mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
9392ralrimiva 2570 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {csn 3623   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    < clt 8080    <_ cle 8081    - cmin 8216    / cdiv 8718   NNcn 9009   2c2 9060   4c4 9062   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   RR+crp 9747    seqcseq 10558   ^cexp 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-seqfrec 10559  df-exp 10650
This theorem is referenced by:  resqrexlemsqa  11208
  Copyright terms: Public domain W3C validator