ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga Unicode version

Theorem resqrexlemga 11334
Description: Lemma for resqrex 11337. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemga  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
j, F, k    x, F, k    e, j, k,
ph    ph, y, z
Allowed substitution hints:    ph( x, i)    A( x, e, i, j, k)    F( y, z, e, i)    G( x, y, z, e, i, j, k)    L( x, y, z, e, i, j, k)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11318 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
54adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
6 1nn 9047 . . . . . . . . . 10  |-  1  e.  NN
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
85, 7ffvelcdmd 5716 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
9 2z 9400 . . . . . . . . 9  |-  2  e.  ZZ
109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  2  e.  ZZ )
118, 10rpexpcld 10842 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
12 simpr 110 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1311, 12rpdivcld 9836 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR+ )
1413rpred 9818 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
15 1red 8087 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  RR )
1614, 15readdcld 8102 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
17 arch 9292 . . . 4  |-  ( ( ( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  e.  RR  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
1816, 17syl 14 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
19 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  NN )
20 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  j )
)
21 eluznn 9721 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
2219, 20, 21syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  NN )
23 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  ph )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ph )
2524, 4syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  F : NN
--> RR+ )
2625, 22ffvelcdmd 5716 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  RR+ )
279a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  2  e.  ZZ )
2826, 27rpexpcld 10842 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR+ )
29 fveq2 5576 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
3029oveq1d 5959 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
31 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
3230, 31fvmptg 5655 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
3322, 28, 32syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  =  ( ( F `  k
) ^ 2 ) )
3428rpred 9818 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR )
3524, 2syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  e.  RR )
3634, 35resubcld 8453 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  e.  RR )
3711ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
3837rpred 9818 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
39 4re 9113 . . . . . . . . . . . . . 14  |-  4  e.  RR
40 4pos 9133 . . . . . . . . . . . . . 14  |-  0  <  4
4139, 40elrpii 9778 . . . . . . . . . . . . 13  |-  4  e.  RR+
4241a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR+ )
43 nnm1nn0 9336 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
4422, 43syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e. 
NN0 )
4544nn0zd 9493 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  ZZ )
4642, 45rpexpcld 10842 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
4738, 46rerpdivcld 9850 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
4812ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR+ )
4948rpred 9818 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR )
501, 2, 3resqrexlemcalc3 11327 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5124, 22, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5214ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
5322nnred 9049 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  RR )
54 1red 8087 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
5553, 54resubcld 8453 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  RR )
5639a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR )
5756, 44reexpcld 10835 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR )
5816ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
5919nnred 9049 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  RR )
60 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
j )
61 eluzle 9660 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
6261adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  <_  k )
6358, 59, 53, 60, 62ltletrd 8496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
k )
6452, 54, 53ltaddsubd 8618 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  k  <->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) ) )
6563, 64mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) )
66 4z 9402 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
67 2re 9106 . . . . . . . . . . . . . . 15  |-  2  e.  RR
68 2lt4 9210 . . . . . . . . . . . . . . 15  |-  2  <  4
6967, 39, 68ltleii 8175 . . . . . . . . . . . . . 14  |-  2  <_  4
70 eluz2 9654 . . . . . . . . . . . . . 14  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  4  e.  ZZ  /\  2  <_ 
4 ) )
719, 66, 69, 70mpbir3an 1182 . . . . . . . . . . . . 13  |-  4  e.  ( ZZ>= `  2 )
72 bernneq3 10807 . . . . . . . . . . . . 13  |-  ( ( 4  e.  ( ZZ>= ` 
2 )  /\  (
k  -  1 )  e.  NN0 )  -> 
( k  -  1 )  <  ( 4 ^ ( k  - 
1 ) ) )
7371, 44, 72sylancr 414 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  < 
( 4 ^ (
k  -  1 ) ) )
7452, 55, 57, 65, 73lttrd 8198 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( 4 ^ (
k  -  1 ) ) )
7538, 48, 46, 74ltdiv23d 9879 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  < 
e )
7636, 47, 49, 51, 75lelttrd 8197 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  < 
e )
7734, 35, 49ltsubadd2d 8616 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) ^ 2 )  -  A )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) ) )
7876, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) )
7933, 78eqbrtrd 4066 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  ( A  +  e )
)
8033, 28eqeltrd 2282 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR+ )
8180rpred 9818 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR )
8281, 49readdcld 8102 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  +  e )  e.  RR )
831, 2, 3resqrexlemover 11321 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  < 
( ( F `  k ) ^ 2 ) )
8424, 22, 83syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( F `  k
) ^ 2 ) )
8584, 33breqtrrd 4072 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( G `  k ) )
8681, 48ltaddrpd 9852 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  (
( G `  k
)  +  e ) )
8735, 81, 82, 85, 86lttrd 8198 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( G `  k
)  +  e ) )
8879, 87jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  <  ( A  +  e )  /\  A  < 
( ( G `  k )  +  e ) ) )
8988ralrimiva 2579 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  A. k  e.  (
ZZ>= `  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) )
9089ex 115 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) ) )
9190reximdva 2608 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) ) )
9218, 91mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
9392ralrimiva 2579 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {csn 3633   class class class wbr 4044    |-> cmpt 4105    X. cxp 4673   -->wf 5267   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108    - cmin 8243    / cdiv 8745   NNcn 9036   2c2 9087   4c4 9089   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775    seqcseq 10592   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  resqrexlemsqa  11335
  Copyright terms: Public domain W3C validator