ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga Unicode version

Theorem resqrexlemga 10795
Description: Lemma for resqrex 10798. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemga  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
j, F, k    x, F, k    e, j, k,
ph    ph, y, z
Allowed substitution hints:    ph( x, i)    A( x, e, i, j, k)    F( y, z, e, i)    G( x, y, z, e, i, j, k)    L( x, y, z, e, i, j, k)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10779 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
54adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
6 1nn 8731 . . . . . . . . . 10  |-  1  e.  NN
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
85, 7ffvelrnd 5556 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
9 2z 9082 . . . . . . . . 9  |-  2  e.  ZZ
109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  2  e.  ZZ )
118, 10rpexpcld 10448 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
12 simpr 109 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1311, 12rpdivcld 9501 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR+ )
1413rpred 9483 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
15 1red 7781 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  RR )
1614, 15readdcld 7795 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
17 arch 8974 . . . 4  |-  ( ( ( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  e.  RR  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
1816, 17syl 14 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
19 simpllr 523 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  NN )
20 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  j )
)
21 eluznn 9394 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
2219, 20, 21syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  NN )
23 simplll 522 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  ph )
2423adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ph )
2524, 4syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  F : NN
--> RR+ )
2625, 22ffvelrnd 5556 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  RR+ )
279a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  2  e.  ZZ )
2826, 27rpexpcld 10448 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR+ )
29 fveq2 5421 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
3029oveq1d 5789 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
31 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
3230, 31fvmptg 5497 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
3322, 28, 32syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  =  ( ( F `  k
) ^ 2 ) )
3428rpred 9483 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR )
3524, 2syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  e.  RR )
3634, 35resubcld 8143 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  e.  RR )
3711ad3antrrr 483 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
3837rpred 9483 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
39 4re 8797 . . . . . . . . . . . . . 14  |-  4  e.  RR
40 4pos 8817 . . . . . . . . . . . . . 14  |-  0  <  4
4139, 40elrpii 9444 . . . . . . . . . . . . 13  |-  4  e.  RR+
4241a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR+ )
43 nnm1nn0 9018 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
4422, 43syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e. 
NN0 )
4544nn0zd 9171 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  ZZ )
4642, 45rpexpcld 10448 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
4738, 46rerpdivcld 9515 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
4812ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR+ )
4948rpred 9483 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR )
501, 2, 3resqrexlemcalc3 10788 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5124, 22, 50syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5214ad3antrrr 483 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
5322nnred 8733 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  RR )
54 1red 7781 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
5553, 54resubcld 8143 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  RR )
5639a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR )
5756, 44reexpcld 10441 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR )
5816ad3antrrr 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
5919nnred 8733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  RR )
60 simplr 519 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
j )
61 eluzle 9338 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
6261adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  <_  k )
6358, 59, 53, 60, 62ltletrd 8185 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
k )
6452, 54, 53ltaddsubd 8307 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  k  <->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) ) )
6563, 64mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) )
66 4z 9084 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
67 2re 8790 . . . . . . . . . . . . . . 15  |-  2  e.  RR
68 2lt4 8893 . . . . . . . . . . . . . . 15  |-  2  <  4
6967, 39, 68ltleii 7866 . . . . . . . . . . . . . 14  |-  2  <_  4
70 eluz2 9332 . . . . . . . . . . . . . 14  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  4  e.  ZZ  /\  2  <_ 
4 ) )
719, 66, 69, 70mpbir3an 1163 . . . . . . . . . . . . 13  |-  4  e.  ( ZZ>= `  2 )
72 bernneq3 10414 . . . . . . . . . . . . 13  |-  ( ( 4  e.  ( ZZ>= ` 
2 )  /\  (
k  -  1 )  e.  NN0 )  -> 
( k  -  1 )  <  ( 4 ^ ( k  - 
1 ) ) )
7371, 44, 72sylancr 410 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  < 
( 4 ^ (
k  -  1 ) ) )
7452, 55, 57, 65, 73lttrd 7888 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( 4 ^ (
k  -  1 ) ) )
7538, 48, 46, 74ltdiv23d 9544 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  < 
e )
7636, 47, 49, 51, 75lelttrd 7887 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  < 
e )
7734, 35, 49ltsubadd2d 8305 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) ^ 2 )  -  A )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) ) )
7876, 77mpbid 146 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) )
7933, 78eqbrtrd 3950 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  ( A  +  e )
)
8033, 28eqeltrd 2216 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR+ )
8180rpred 9483 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR )
8281, 49readdcld 7795 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  +  e )  e.  RR )
831, 2, 3resqrexlemover 10782 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  < 
( ( F `  k ) ^ 2 ) )
8424, 22, 83syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( F `  k
) ^ 2 ) )
8584, 33breqtrrd 3956 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( G `  k ) )
8681, 48ltaddrpd 9517 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  (
( G `  k
)  +  e ) )
8735, 81, 82, 85, 86lttrd 7888 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( G `  k
)  +  e ) )
8879, 87jca 304 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  <  ( A  +  e )  /\  A  < 
( ( G `  k )  +  e ) ) )
8988ralrimiva 2505 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  A. k  e.  (
ZZ>= `  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) )
9089ex 114 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) ) )
9190reximdva 2534 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) ) )
9218, 91mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
9392ralrimiva 2505 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {csn 3527   class class class wbr 3929    |-> cmpt 3989    X. cxp 4537   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801    - cmin 7933    / cdiv 8432   NNcn 8720   2c2 8771   4c4 8773   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441    seqcseq 10218   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  resqrexlemsqa  10796
  Copyright terms: Public domain W3C validator