![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2rp | Unicode version |
Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
2rp |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9054 |
. 2
![]() ![]() ![]() ![]() | |
2 | 2pos 9075 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | elrpii 9725 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-2 9043 df-rp 9723 |
This theorem is referenced by: rphalfcl 9750 qbtwnrelemcalc 10327 flhalf 10374 fldiv4lem1div2uz2 10378 cvg1nlemcxze 11129 cvg1nlemres 11132 resqrexlemdec 11158 resqrexlemlo 11160 resqrexlemcvg 11166 abstri 11251 maxabsle 11351 maxabslemlub 11354 maxltsup 11365 bdtri 11386 efcllemp 11804 cos12dec 11914 oddprm 12400 ivthdichlem 14830 sin0pilem2 14958 cosordlem 15025 2logb9irrALT 15147 sqrt2cxp2logb9e3 15148 gausslemma2dlem1a 15215 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 cvgcmp2nlemabs 15592 cvgcmp2n 15593 trilpolemclim 15596 trilpolemcl 15597 trilpolemisumle 15598 trilpolemeq1 15600 trilpolemlt1 15601 apdifflemf 15606 nconstwlpolemgt0 15624 taupi 15633 |
Copyright terms: Public domain | W3C validator |