Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rp | Unicode version |
Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
2rp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8927 | . 2 | |
2 | 2pos 8948 | . 2 | |
3 | 1, 2 | elrpii 9592 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 c2 8908 crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-2 8916 df-rp 9590 |
This theorem is referenced by: rphalfcl 9617 qbtwnrelemcalc 10191 flhalf 10237 cvg1nlemcxze 10924 cvg1nlemres 10927 resqrexlemdec 10953 resqrexlemlo 10955 resqrexlemcvg 10961 abstri 11046 maxabsle 11146 maxabslemlub 11149 maxltsup 11160 bdtri 11181 efcllemp 11599 cos12dec 11708 oddprm 12191 sin0pilem2 13343 cosordlem 13410 2logb9irrALT 13532 sqrt2cxp2logb9e3 13533 cvgcmp2nlemabs 13911 cvgcmp2n 13912 trilpolemclim 13915 trilpolemcl 13916 trilpolemisumle 13917 trilpolemeq1 13919 trilpolemlt1 13920 apdifflemf 13925 nconstwlpolemgt0 13942 taupi 13949 |
Copyright terms: Public domain | W3C validator |