| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | Unicode version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9180 |
. 2
| |
| 2 | 2pos 9201 |
. 2
| |
| 3 | 1, 2 | elrpii 9852 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-2 9169 df-rp 9850 |
| This theorem is referenced by: rphalfcl 9877 qbtwnrelemcalc 10475 flhalf 10522 fldiv4lem1div2uz2 10526 cvg1nlemcxze 11493 cvg1nlemres 11496 resqrexlemdec 11522 resqrexlemlo 11524 resqrexlemcvg 11530 abstri 11615 maxabsle 11715 maxabslemlub 11718 maxltsup 11729 bdtri 11751 efcllemp 12169 cos12dec 12279 bitsfzolem 12465 bitsfzo 12466 bitsmod 12467 oddprm 12782 2expltfac 12962 ivthdichlem 15325 sin0pilem2 15456 cosordlem 15523 2logb9irrALT 15648 sqrt2cxp2logb9e3 15649 1sgm2ppw 15669 gausslemma2dlem1a 15737 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 cvgcmp2nlemabs 16400 cvgcmp2n 16401 trilpolemclim 16404 trilpolemcl 16405 trilpolemisumle 16406 trilpolemeq1 16408 trilpolemlt1 16409 apdifflemf 16414 nconstwlpolemgt0 16432 taupi 16441 |
| Copyright terms: Public domain | W3C validator |