![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2rp | Unicode version |
Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
2rp |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9052 |
. 2
![]() ![]() ![]() ![]() | |
2 | 2pos 9073 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | elrpii 9722 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-2 9041 df-rp 9720 |
This theorem is referenced by: rphalfcl 9747 qbtwnrelemcalc 10324 flhalf 10371 fldiv4lem1div2uz2 10375 cvg1nlemcxze 11126 cvg1nlemres 11129 resqrexlemdec 11155 resqrexlemlo 11157 resqrexlemcvg 11163 abstri 11248 maxabsle 11348 maxabslemlub 11351 maxltsup 11362 bdtri 11383 efcllemp 11801 cos12dec 11911 oddprm 12397 ivthdichlem 14805 sin0pilem2 14917 cosordlem 14984 2logb9irrALT 15106 sqrt2cxp2logb9e3 15107 gausslemma2dlem1a 15174 cvgcmp2nlemabs 15522 cvgcmp2n 15523 trilpolemclim 15526 trilpolemcl 15527 trilpolemisumle 15528 trilpolemeq1 15530 trilpolemlt1 15531 apdifflemf 15536 nconstwlpolemgt0 15554 taupi 15563 |
Copyright terms: Public domain | W3C validator |