| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | Unicode version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9108 |
. 2
| |
| 2 | 2pos 9129 |
. 2
| |
| 3 | 1, 2 | elrpii 9780 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-2 9097 df-rp 9778 |
| This theorem is referenced by: rphalfcl 9805 qbtwnrelemcalc 10400 flhalf 10447 fldiv4lem1div2uz2 10451 cvg1nlemcxze 11326 cvg1nlemres 11329 resqrexlemdec 11355 resqrexlemlo 11357 resqrexlemcvg 11363 abstri 11448 maxabsle 11548 maxabslemlub 11551 maxltsup 11562 bdtri 11584 efcllemp 12002 cos12dec 12112 bitsfzolem 12298 bitsfzo 12299 bitsmod 12300 oddprm 12615 2expltfac 12795 ivthdichlem 15156 sin0pilem2 15287 cosordlem 15354 2logb9irrALT 15479 sqrt2cxp2logb9e3 15480 1sgm2ppw 15500 gausslemma2dlem1a 15568 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 cvgcmp2nlemabs 16008 cvgcmp2n 16009 trilpolemclim 16012 trilpolemcl 16013 trilpolemisumle 16014 trilpolemeq1 16016 trilpolemlt1 16017 apdifflemf 16022 nconstwlpolemgt0 16040 taupi 16049 |
| Copyright terms: Public domain | W3C validator |