ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi Unicode version

Theorem coseq0negpitopi 14296
Description: Location of the zeroes of cosine in  ( -u pi (,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( cos `  A )  =  0 )
2 pire 14246 . . . . . . . . . . . . 13  |-  pi  e.  RR
32renegcli 8221 . . . . . . . . . . . 12  |-  -u pi  e.  RR
43rexri 8017 . . . . . . . . . . 11  |-  -u pi  e.  RR*
5 elioc2 9938 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) ) )
64, 2, 5mp2an 426 . . . . . . . . . 10  |-  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) )
76simp1bi 1012 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  e.  RR )
87adantr 276 . . . . . . . 8  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  RR )
98adantr 276 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  RR )
10 halfpire 14252 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  RR
1110renegcli 8221 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR
1211a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  e.  RR )
13 4re 8998 . . . . . . . . . . 11  |-  4  e.  RR
14 4ap0 9020 . . . . . . . . . . 11  |-  4 #  0
152, 13, 14redivclapi 8738 . . . . . . . . . 10  |-  ( pi 
/  4 )  e.  RR
1615renegcli 8221 . . . . . . . . 9  |-  -u (
pi  /  4 )  e.  RR
1716a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  e.  RR )
18 2lt4 9094 . . . . . . . . . . 11  |-  2  <  4
19 2re 8991 . . . . . . . . . . . . 13  |-  2  e.  RR
20 2pos 9012 . . . . . . . . . . . . 13  |-  0  <  2
2119, 20pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
22 4pos 9018 . . . . . . . . . . . . 13  |-  0  <  4
2313, 22pm3.2i 272 . . . . . . . . . . . 12  |-  ( 4  e.  RR  /\  0  <  4 )
24 pipos 14248 . . . . . . . . . . . . 13  |-  0  <  pi
252, 24pm3.2i 272 . . . . . . . . . . . 12  |-  ( pi  e.  RR  /\  0  <  pi )
26 ltdiv2 8846 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 4  e.  RR  /\  0  <  4 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  4  <->  ( pi  / 
4 )  <  (
pi  /  2 ) ) )
2721, 23, 25, 26mp3an 1337 . . . . . . . . . . 11  |-  ( 2  <  4  <->  ( pi  /  4 )  <  (
pi  /  2 ) )
2818, 27mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  4 )  < 
( pi  /  2
)
2915, 10ltnegi 8452 . . . . . . . . . 10  |-  ( ( pi  /  4 )  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
3028, 29mpbi 145 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  -u ( pi  / 
4 )
3130a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
32 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  < 
A )
3312, 17, 9, 31, 32lttrd 8085 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  < 
A )
342a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  e.  RR )
35 3re 8995 . . . . . . . . . 10  |-  3  e.  RR
3635, 10remulcli 7973 . . . . . . . . 9  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
3736a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( 3  x.  ( pi  / 
2 ) )  e.  RR )
386simp3bi 1014 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  <_  pi )
3938ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <_  pi )
40 2lt3 9091 . . . . . . . . . . 11  |-  2  <  3
41 3pos 9015 . . . . . . . . . . . . 13  |-  0  <  3
4235, 41pm3.2i 272 . . . . . . . . . . . 12  |-  ( 3  e.  RR  /\  0  <  3 )
43 ltdiv2 8846 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  3  <->  ( pi  / 
3 )  <  (
pi  /  2 ) ) )
4421, 42, 25, 43mp3an 1337 . . . . . . . . . . 11  |-  ( 2  <  3  <->  ( pi  /  3 )  <  (
pi  /  2 ) )
4540, 44mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  3 )  < 
( pi  /  2
)
46 ltdivmul 8835 . . . . . . . . . . 11  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  ( (
pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) ) )
472, 10, 42, 46mp3an 1337 . . . . . . . . . 10  |-  ( ( pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
4845, 47mpbi 145 . . . . . . . . 9  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
4948a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
509, 34, 37, 39, 49lelttrd 8084 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
5111rexri 8017 . . . . . . . 8  |-  -u (
pi  /  2 )  e.  RR*
5236rexri 8017 . . . . . . . 8  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
53 elioo2 9923 . . . . . . . 8  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
5451, 52, 53mp2an 426 . . . . . . 7  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
559, 33, 50, 54syl3anbrc 1181 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  ( -u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
56 coseq0q4123 14294 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
5755, 56syl 14 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( ( cos `  A )  =  0  <->  A  =  (
pi  /  2 ) ) )
581, 57mpbid 147 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  =  ( pi  /  2
) )
59 prid1g 3698 . . . . 5  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) } )
60 eleq1a 2249 . . . . 5  |-  ( ( pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } ) )
6110, 59, 60mp2b 8 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
6258, 61syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
638recnd 7988 . . . . . . 7  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  CC )
6463adantr 276 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  CC )
65 cosneg 11737 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
6664, 65syl 14 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  ( cos `  A ) )
67 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  A )  =  0 )
6866, 67eqtrd 2210 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  0 )
698renegcld 8339 . . . . . . . . . 10  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  e.  RR )
7069adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  RR )
71 0re 7959 . . . . . . . . . . 11  |-  0  e.  RR
7271a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  e.  RR )
73 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  <  0 )
748adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  RR )
7574lt0neg1d 8474 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
7673, 75mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <  -u A )
7772, 70, 76ltled 8078 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <_  -u A )
782a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  pi  e.  RR )
792a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  pi  e.  RR )
806simp2bi 1013 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u pi (,] pi )  ->  -u pi  <  A )
8180adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u pi  <  A )
8279, 8, 81ltnegcon1d 8484 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  <  pi )
8382adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  < 
pi )
8470, 78, 83ltled 8078 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  <_  pi )
8571, 2elicc2i 9941 . . . . . . . . 9  |-  ( -u A  e.  ( 0 [,] pi )  <->  ( -u A  e.  RR  /\  0  <_  -u A  /\  -u A  <_  pi ) )
8670, 77, 84, 85syl3anbrc 1181 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  ( 0 [,] pi ) )
87 coseq00topi 14295 . . . . . . . 8  |-  ( -u A  e.  ( 0 [,] pi )  -> 
( ( cos `  -u A
)  =  0  <->  -u A  =  ( pi  / 
2 ) ) )
8886, 87syl 14 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( ( cos `  -u A )  =  0  <->  -u A  =  ( pi  /  2 ) ) )
8968, 88mpbid 147 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  =  ( pi  /  2
) )
9064, 89negcon1ad 8265 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u ( pi 
/  2 )  =  A )
9190eqcomd 2183 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  =  -u ( pi  /  2
) )
92 prid2g 3699 . . . . 5  |-  ( -u ( pi  /  2
)  e.  RR  ->  -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
93 eleq1a 2249 . . . . 5  |-  ( -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) }  ->  ( A  =  -u (
pi  /  2 )  ->  A  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
9411, 92, 93mp2b 8 . . . 4  |-  ( A  =  -u ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
9591, 94syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
96 pirp 14249 . . . . . . 7  |-  pi  e.  RR+
9713, 22elrpii 9658 . . . . . . 7  |-  4  e.  RR+
98 rpdivcl 9681 . . . . . . 7  |-  ( ( pi  e.  RR+  /\  4  e.  RR+ )  ->  (
pi  /  4 )  e.  RR+ )
9996, 97, 98mp2an 426 . . . . . 6  |-  ( pi 
/  4 )  e.  RR+
100 rpgt0 9667 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR+  ->  0  < 
( pi  /  4
) )
10199, 100ax-mp 5 . . . . 5  |-  0  <  ( pi  /  4
)
102 lt0neg2 8428 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR  ->  (
0  <  ( pi  /  4 )  <->  -u ( pi 
/  4 )  <  0 ) )
10315, 102ax-mp 5 . . . . 5  |-  ( 0  <  ( pi  / 
4 )  <->  -u ( pi 
/  4 )  <  0 )
104101, 103mpbi 145 . . . 4  |-  -u (
pi  /  4 )  <  0
105 axltwlin 8027 . . . . 5  |-  ( (
-u ( pi  / 
4 )  e.  RR  /\  0  e.  RR  /\  A  e.  RR )  ->  ( -u ( pi 
/  4 )  <  0  ->  ( -u (
pi  /  4 )  <  A  \/  A  <  0 ) ) )
10616, 71, 8, 105mp3an12i 1341 . . . 4  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  0  ->  ( -u ( pi 
/  4 )  < 
A  \/  A  <  0 ) ) )
107104, 106mpi 15 . . 3  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  A  \/  A  <  0
) )
10862, 95, 107mpjaodan 798 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )
109 elpri 3617 . . . 4  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) ) )
110 fveq2 5517 . . . . . 6  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
111 coshalfpi 14257 . . . . . 6  |-  ( cos `  ( pi  /  2
) )  =  0
112110, 111eqtrdi 2226 . . . . 5  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
113 fveq2 5517 . . . . . 6  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  -u (
pi  /  2 ) ) )
114 cosneghalfpi 14258 . . . . . 6  |-  ( cos `  -u ( pi  / 
2 ) )  =  0
115113, 114eqtrdi 2226 . . . . 5  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
116112, 115jaoi 716 . . . 4  |-  ( ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) )  ->  ( cos `  A )  =  0 )
117109, 116syl 14 . . 3  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( cos `  A )  =  0 )
118117adantl 277 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )  ->  ( cos `  A
)  =  0 )
119108, 118impbida 596 1  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   {cpr 3595   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    x. cmul 7818   RR*cxr 7993    < clt 7994    <_ cle 7995   -ucneg 8131    / cdiv 8631   2c2 8972   3c3 8973   4c4 8974   RR+crp 9655   (,)cioo 9890   (,]cioc 9891   [,]cicc 9893   cosccos 11655   picpi 11657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-pre-suploc 7934  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-map 6652  df-pm 6653  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-ioc 9895  df-ico 9896  df-icc 9897  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-bc 10730  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-sin 11660  df-cos 11661  df-pi 11663  df-rest 12695  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-ntr 13635  df-cn 13727  df-cnp 13728  df-tx 13792  df-cncf 14097  df-limced 14164  df-dvap 14165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator