ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi Unicode version

Theorem coseq0negpitopi 15510
Description: Location of the zeroes of cosine in  ( -u pi (,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( cos `  A )  =  0 )
2 pire 15460 . . . . . . . . . . . . 13  |-  pi  e.  RR
32renegcli 8408 . . . . . . . . . . . 12  |-  -u pi  e.  RR
43rexri 8204 . . . . . . . . . . 11  |-  -u pi  e.  RR*
5 elioc2 10132 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) ) )
64, 2, 5mp2an 426 . . . . . . . . . 10  |-  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) )
76simp1bi 1036 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  e.  RR )
87adantr 276 . . . . . . . 8  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  RR )
98adantr 276 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  RR )
10 halfpire 15466 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  RR
1110renegcli 8408 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR
1211a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  e.  RR )
13 4re 9187 . . . . . . . . . . 11  |-  4  e.  RR
14 4ap0 9209 . . . . . . . . . . 11  |-  4 #  0
152, 13, 14redivclapi 8926 . . . . . . . . . 10  |-  ( pi 
/  4 )  e.  RR
1615renegcli 8408 . . . . . . . . 9  |-  -u (
pi  /  4 )  e.  RR
1716a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  e.  RR )
18 2lt4 9284 . . . . . . . . . . 11  |-  2  <  4
19 2re 9180 . . . . . . . . . . . . 13  |-  2  e.  RR
20 2pos 9201 . . . . . . . . . . . . 13  |-  0  <  2
2119, 20pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
22 4pos 9207 . . . . . . . . . . . . 13  |-  0  <  4
2313, 22pm3.2i 272 . . . . . . . . . . . 12  |-  ( 4  e.  RR  /\  0  <  4 )
24 pipos 15462 . . . . . . . . . . . . 13  |-  0  <  pi
252, 24pm3.2i 272 . . . . . . . . . . . 12  |-  ( pi  e.  RR  /\  0  <  pi )
26 ltdiv2 9034 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 4  e.  RR  /\  0  <  4 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  4  <->  ( pi  / 
4 )  <  (
pi  /  2 ) ) )
2721, 23, 25, 26mp3an 1371 . . . . . . . . . . 11  |-  ( 2  <  4  <->  ( pi  /  4 )  <  (
pi  /  2 ) )
2818, 27mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  4 )  < 
( pi  /  2
)
2915, 10ltnegi 8640 . . . . . . . . . 10  |-  ( ( pi  /  4 )  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
3028, 29mpbi 145 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  -u ( pi  / 
4 )
3130a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
32 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  < 
A )
3312, 17, 9, 31, 32lttrd 8272 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  < 
A )
342a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  e.  RR )
35 3re 9184 . . . . . . . . . 10  |-  3  e.  RR
3635, 10remulcli 8160 . . . . . . . . 9  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
3736a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( 3  x.  ( pi  / 
2 ) )  e.  RR )
386simp3bi 1038 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  <_  pi )
3938ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <_  pi )
40 2lt3 9281 . . . . . . . . . . 11  |-  2  <  3
41 3pos 9204 . . . . . . . . . . . . 13  |-  0  <  3
4235, 41pm3.2i 272 . . . . . . . . . . . 12  |-  ( 3  e.  RR  /\  0  <  3 )
43 ltdiv2 9034 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  3  <->  ( pi  / 
3 )  <  (
pi  /  2 ) ) )
4421, 42, 25, 43mp3an 1371 . . . . . . . . . . 11  |-  ( 2  <  3  <->  ( pi  /  3 )  <  (
pi  /  2 ) )
4540, 44mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  3 )  < 
( pi  /  2
)
46 ltdivmul 9023 . . . . . . . . . . 11  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  ( (
pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) ) )
472, 10, 42, 46mp3an 1371 . . . . . . . . . 10  |-  ( ( pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
4845, 47mpbi 145 . . . . . . . . 9  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
4948a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
509, 34, 37, 39, 49lelttrd 8271 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
5111rexri 8204 . . . . . . . 8  |-  -u (
pi  /  2 )  e.  RR*
5236rexri 8204 . . . . . . . 8  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
53 elioo2 10117 . . . . . . . 8  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
5451, 52, 53mp2an 426 . . . . . . 7  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
559, 33, 50, 54syl3anbrc 1205 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  ( -u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
56 coseq0q4123 15508 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
5755, 56syl 14 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( ( cos `  A )  =  0  <->  A  =  (
pi  /  2 ) ) )
581, 57mpbid 147 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  =  ( pi  /  2
) )
59 prid1g 3770 . . . . 5  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) } )
60 eleq1a 2301 . . . . 5  |-  ( ( pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } ) )
6110, 59, 60mp2b 8 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
6258, 61syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
638recnd 8175 . . . . . . 7  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  CC )
6463adantr 276 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  CC )
65 cosneg 12238 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
6664, 65syl 14 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  ( cos `  A ) )
67 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  A )  =  0 )
6866, 67eqtrd 2262 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  0 )
698renegcld 8526 . . . . . . . . . 10  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  e.  RR )
7069adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  RR )
71 0re 8146 . . . . . . . . . . 11  |-  0  e.  RR
7271a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  e.  RR )
73 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  <  0 )
748adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  RR )
7574lt0neg1d 8662 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
7673, 75mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <  -u A )
7772, 70, 76ltled 8265 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <_  -u A )
782a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  pi  e.  RR )
792a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  pi  e.  RR )
806simp2bi 1037 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u pi (,] pi )  ->  -u pi  <  A )
8180adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u pi  <  A )
8279, 8, 81ltnegcon1d 8672 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  <  pi )
8382adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  < 
pi )
8470, 78, 83ltled 8265 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  <_  pi )
8571, 2elicc2i 10135 . . . . . . . . 9  |-  ( -u A  e.  ( 0 [,] pi )  <->  ( -u A  e.  RR  /\  0  <_  -u A  /\  -u A  <_  pi ) )
8670, 77, 84, 85syl3anbrc 1205 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  ( 0 [,] pi ) )
87 coseq00topi 15509 . . . . . . . 8  |-  ( -u A  e.  ( 0 [,] pi )  -> 
( ( cos `  -u A
)  =  0  <->  -u A  =  ( pi  / 
2 ) ) )
8886, 87syl 14 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( ( cos `  -u A )  =  0  <->  -u A  =  ( pi  /  2 ) ) )
8968, 88mpbid 147 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  =  ( pi  /  2
) )
9064, 89negcon1ad 8452 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u ( pi 
/  2 )  =  A )
9190eqcomd 2235 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  =  -u ( pi  /  2
) )
92 prid2g 3771 . . . . 5  |-  ( -u ( pi  /  2
)  e.  RR  ->  -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
93 eleq1a 2301 . . . . 5  |-  ( -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) }  ->  ( A  =  -u (
pi  /  2 )  ->  A  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
9411, 92, 93mp2b 8 . . . 4  |-  ( A  =  -u ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
9591, 94syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
96 pirp 15463 . . . . . . 7  |-  pi  e.  RR+
9713, 22elrpii 9852 . . . . . . 7  |-  4  e.  RR+
98 rpdivcl 9875 . . . . . . 7  |-  ( ( pi  e.  RR+  /\  4  e.  RR+ )  ->  (
pi  /  4 )  e.  RR+ )
9996, 97, 98mp2an 426 . . . . . 6  |-  ( pi 
/  4 )  e.  RR+
100 rpgt0 9861 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR+  ->  0  < 
( pi  /  4
) )
10199, 100ax-mp 5 . . . . 5  |-  0  <  ( pi  /  4
)
102 lt0neg2 8616 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR  ->  (
0  <  ( pi  /  4 )  <->  -u ( pi 
/  4 )  <  0 ) )
10315, 102ax-mp 5 . . . . 5  |-  ( 0  <  ( pi  / 
4 )  <->  -u ( pi 
/  4 )  <  0 )
104101, 103mpbi 145 . . . 4  |-  -u (
pi  /  4 )  <  0
105 axltwlin 8214 . . . . 5  |-  ( (
-u ( pi  / 
4 )  e.  RR  /\  0  e.  RR  /\  A  e.  RR )  ->  ( -u ( pi 
/  4 )  <  0  ->  ( -u (
pi  /  4 )  <  A  \/  A  <  0 ) ) )
10616, 71, 8, 105mp3an12i 1375 . . . 4  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  0  ->  ( -u ( pi 
/  4 )  < 
A  \/  A  <  0 ) ) )
107104, 106mpi 15 . . 3  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  A  \/  A  <  0
) )
10862, 95, 107mpjaodan 803 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )
109 elpri 3689 . . . 4  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) ) )
110 fveq2 5627 . . . . . 6  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
111 coshalfpi 15471 . . . . . 6  |-  ( cos `  ( pi  /  2
) )  =  0
112110, 111eqtrdi 2278 . . . . 5  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
113 fveq2 5627 . . . . . 6  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  -u (
pi  /  2 ) ) )
114 cosneghalfpi 15472 . . . . . 6  |-  ( cos `  -u ( pi  / 
2 ) )  =  0
115113, 114eqtrdi 2278 . . . . 5  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
116112, 115jaoi 721 . . . 4  |-  ( ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) )  ->  ( cos `  A )  =  0 )
117109, 116syl 14 . . 3  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( cos `  A )  =  0 )
118117adantl 277 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )  ->  ( cos `  A
)  =  0 )
119108, 118impbida 598 1  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    x. cmul 8004   RR*cxr 8180    < clt 8181    <_ cle 8182   -ucneg 8318    / cdiv 8819   2c2 9161   3c3 9162   4c4 9163   RR+crp 9849   (,)cioo 10084   (,]cioc 10085   [,]cicc 10087   cosccos 12156   picpi 12158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ioc 10089  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162  df-pi 12164  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator