ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi Unicode version

Theorem coseq0negpitopi 15423
Description: Location of the zeroes of cosine in  ( -u pi (,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( cos `  A )  =  0 )
2 pire 15373 . . . . . . . . . . . . 13  |-  pi  e.  RR
32renegcli 8369 . . . . . . . . . . . 12  |-  -u pi  e.  RR
43rexri 8165 . . . . . . . . . . 11  |-  -u pi  e.  RR*
5 elioc2 10093 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) ) )
64, 2, 5mp2an 426 . . . . . . . . . 10  |-  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) )
76simp1bi 1015 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  e.  RR )
87adantr 276 . . . . . . . 8  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  RR )
98adantr 276 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  RR )
10 halfpire 15379 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  RR
1110renegcli 8369 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR
1211a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  e.  RR )
13 4re 9148 . . . . . . . . . . 11  |-  4  e.  RR
14 4ap0 9170 . . . . . . . . . . 11  |-  4 #  0
152, 13, 14redivclapi 8887 . . . . . . . . . 10  |-  ( pi 
/  4 )  e.  RR
1615renegcli 8369 . . . . . . . . 9  |-  -u (
pi  /  4 )  e.  RR
1716a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  e.  RR )
18 2lt4 9245 . . . . . . . . . . 11  |-  2  <  4
19 2re 9141 . . . . . . . . . . . . 13  |-  2  e.  RR
20 2pos 9162 . . . . . . . . . . . . 13  |-  0  <  2
2119, 20pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
22 4pos 9168 . . . . . . . . . . . . 13  |-  0  <  4
2313, 22pm3.2i 272 . . . . . . . . . . . 12  |-  ( 4  e.  RR  /\  0  <  4 )
24 pipos 15375 . . . . . . . . . . . . 13  |-  0  <  pi
252, 24pm3.2i 272 . . . . . . . . . . . 12  |-  ( pi  e.  RR  /\  0  <  pi )
26 ltdiv2 8995 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 4  e.  RR  /\  0  <  4 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  4  <->  ( pi  / 
4 )  <  (
pi  /  2 ) ) )
2721, 23, 25, 26mp3an 1350 . . . . . . . . . . 11  |-  ( 2  <  4  <->  ( pi  /  4 )  <  (
pi  /  2 ) )
2818, 27mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  4 )  < 
( pi  /  2
)
2915, 10ltnegi 8601 . . . . . . . . . 10  |-  ( ( pi  /  4 )  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
3028, 29mpbi 145 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  -u ( pi  / 
4 )
3130a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
32 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  < 
A )
3312, 17, 9, 31, 32lttrd 8233 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  < 
A )
342a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  e.  RR )
35 3re 9145 . . . . . . . . . 10  |-  3  e.  RR
3635, 10remulcli 8121 . . . . . . . . 9  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
3736a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( 3  x.  ( pi  / 
2 ) )  e.  RR )
386simp3bi 1017 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  <_  pi )
3938ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <_  pi )
40 2lt3 9242 . . . . . . . . . . 11  |-  2  <  3
41 3pos 9165 . . . . . . . . . . . . 13  |-  0  <  3
4235, 41pm3.2i 272 . . . . . . . . . . . 12  |-  ( 3  e.  RR  /\  0  <  3 )
43 ltdiv2 8995 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  3  <->  ( pi  / 
3 )  <  (
pi  /  2 ) ) )
4421, 42, 25, 43mp3an 1350 . . . . . . . . . . 11  |-  ( 2  <  3  <->  ( pi  /  3 )  <  (
pi  /  2 ) )
4540, 44mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  3 )  < 
( pi  /  2
)
46 ltdivmul 8984 . . . . . . . . . . 11  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  ( (
pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) ) )
472, 10, 42, 46mp3an 1350 . . . . . . . . . 10  |-  ( ( pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
4845, 47mpbi 145 . . . . . . . . 9  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
4948a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
509, 34, 37, 39, 49lelttrd 8232 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
5111rexri 8165 . . . . . . . 8  |-  -u (
pi  /  2 )  e.  RR*
5236rexri 8165 . . . . . . . 8  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
53 elioo2 10078 . . . . . . . 8  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
5451, 52, 53mp2an 426 . . . . . . 7  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
559, 33, 50, 54syl3anbrc 1184 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  ( -u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
56 coseq0q4123 15421 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
5755, 56syl 14 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( ( cos `  A )  =  0  <->  A  =  (
pi  /  2 ) ) )
581, 57mpbid 147 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  =  ( pi  /  2
) )
59 prid1g 3747 . . . . 5  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) } )
60 eleq1a 2279 . . . . 5  |-  ( ( pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } ) )
6110, 59, 60mp2b 8 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
6258, 61syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
638recnd 8136 . . . . . . 7  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  CC )
6463adantr 276 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  CC )
65 cosneg 12153 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
6664, 65syl 14 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  ( cos `  A ) )
67 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  A )  =  0 )
6866, 67eqtrd 2240 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  0 )
698renegcld 8487 . . . . . . . . . 10  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  e.  RR )
7069adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  RR )
71 0re 8107 . . . . . . . . . . 11  |-  0  e.  RR
7271a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  e.  RR )
73 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  <  0 )
748adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  RR )
7574lt0neg1d 8623 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
7673, 75mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <  -u A )
7772, 70, 76ltled 8226 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <_  -u A )
782a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  pi  e.  RR )
792a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  pi  e.  RR )
806simp2bi 1016 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u pi (,] pi )  ->  -u pi  <  A )
8180adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u pi  <  A )
8279, 8, 81ltnegcon1d 8633 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  <  pi )
8382adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  < 
pi )
8470, 78, 83ltled 8226 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  <_  pi )
8571, 2elicc2i 10096 . . . . . . . . 9  |-  ( -u A  e.  ( 0 [,] pi )  <->  ( -u A  e.  RR  /\  0  <_  -u A  /\  -u A  <_  pi ) )
8670, 77, 84, 85syl3anbrc 1184 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  ( 0 [,] pi ) )
87 coseq00topi 15422 . . . . . . . 8  |-  ( -u A  e.  ( 0 [,] pi )  -> 
( ( cos `  -u A
)  =  0  <->  -u A  =  ( pi  / 
2 ) ) )
8886, 87syl 14 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( ( cos `  -u A )  =  0  <->  -u A  =  ( pi  /  2 ) ) )
8968, 88mpbid 147 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  =  ( pi  /  2
) )
9064, 89negcon1ad 8413 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u ( pi 
/  2 )  =  A )
9190eqcomd 2213 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  =  -u ( pi  /  2
) )
92 prid2g 3748 . . . . 5  |-  ( -u ( pi  /  2
)  e.  RR  ->  -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
93 eleq1a 2279 . . . . 5  |-  ( -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) }  ->  ( A  =  -u (
pi  /  2 )  ->  A  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
9411, 92, 93mp2b 8 . . . 4  |-  ( A  =  -u ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
9591, 94syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
96 pirp 15376 . . . . . . 7  |-  pi  e.  RR+
9713, 22elrpii 9813 . . . . . . 7  |-  4  e.  RR+
98 rpdivcl 9836 . . . . . . 7  |-  ( ( pi  e.  RR+  /\  4  e.  RR+ )  ->  (
pi  /  4 )  e.  RR+ )
9996, 97, 98mp2an 426 . . . . . 6  |-  ( pi 
/  4 )  e.  RR+
100 rpgt0 9822 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR+  ->  0  < 
( pi  /  4
) )
10199, 100ax-mp 5 . . . . 5  |-  0  <  ( pi  /  4
)
102 lt0neg2 8577 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR  ->  (
0  <  ( pi  /  4 )  <->  -u ( pi 
/  4 )  <  0 ) )
10315, 102ax-mp 5 . . . . 5  |-  ( 0  <  ( pi  / 
4 )  <->  -u ( pi 
/  4 )  <  0 )
104101, 103mpbi 145 . . . 4  |-  -u (
pi  /  4 )  <  0
105 axltwlin 8175 . . . . 5  |-  ( (
-u ( pi  / 
4 )  e.  RR  /\  0  e.  RR  /\  A  e.  RR )  ->  ( -u ( pi 
/  4 )  <  0  ->  ( -u (
pi  /  4 )  <  A  \/  A  <  0 ) ) )
10616, 71, 8, 105mp3an12i 1354 . . . 4  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  0  ->  ( -u ( pi 
/  4 )  < 
A  \/  A  <  0 ) ) )
107104, 106mpi 15 . . 3  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  A  \/  A  <  0
) )
10862, 95, 107mpjaodan 800 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )
109 elpri 3666 . . . 4  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) ) )
110 fveq2 5599 . . . . . 6  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
111 coshalfpi 15384 . . . . . 6  |-  ( cos `  ( pi  /  2
) )  =  0
112110, 111eqtrdi 2256 . . . . 5  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
113 fveq2 5599 . . . . . 6  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  -u (
pi  /  2 ) ) )
114 cosneghalfpi 15385 . . . . . 6  |-  ( cos `  -u ( pi  / 
2 ) )  =  0
115113, 114eqtrdi 2256 . . . . 5  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
116112, 115jaoi 718 . . . 4  |-  ( ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) )  ->  ( cos `  A )  =  0 )
117109, 116syl 14 . . 3  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( cos `  A )  =  0 )
118117adantl 277 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )  ->  ( cos `  A
)  =  0 )
119108, 118impbida 596 1  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   {cpr 3644   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    x. cmul 7965   RR*cxr 8141    < clt 8142    <_ cle 8143   -ucneg 8279    / cdiv 8780   2c2 9122   3c3 9123   4c4 9124   RR+crp 9810   (,)cioo 10045   (,]cioc 10046   [,]cicc 10048   cosccos 12071   picpi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077  df-pi 12079  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator