ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi Unicode version

Theorem coseq0negpitopi 13924
Description: Location of the zeroes of cosine in  ( -u pi (,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( cos `  A )  =  0 )
2 pire 13874 . . . . . . . . . . . . 13  |-  pi  e.  RR
32renegcli 8209 . . . . . . . . . . . 12  |-  -u pi  e.  RR
43rexri 8005 . . . . . . . . . . 11  |-  -u pi  e.  RR*
5 elioc2 9923 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) ) )
64, 2, 5mp2an 426 . . . . . . . . . 10  |-  ( A  e.  ( -u pi (,] pi )  <->  ( A  e.  RR  /\  -u pi  <  A  /\  A  <_  pi ) )
76simp1bi 1012 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  e.  RR )
87adantr 276 . . . . . . . 8  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  RR )
98adantr 276 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  RR )
10 halfpire 13880 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  RR
1110renegcli 8209 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR
1211a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  e.  RR )
13 4re 8985 . . . . . . . . . . 11  |-  4  e.  RR
14 4ap0 9007 . . . . . . . . . . 11  |-  4 #  0
152, 13, 14redivclapi 8725 . . . . . . . . . 10  |-  ( pi 
/  4 )  e.  RR
1615renegcli 8209 . . . . . . . . 9  |-  -u (
pi  /  4 )  e.  RR
1716a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  e.  RR )
18 2lt4 9081 . . . . . . . . . . 11  |-  2  <  4
19 2re 8978 . . . . . . . . . . . . 13  |-  2  e.  RR
20 2pos 8999 . . . . . . . . . . . . 13  |-  0  <  2
2119, 20pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
22 4pos 9005 . . . . . . . . . . . . 13  |-  0  <  4
2313, 22pm3.2i 272 . . . . . . . . . . . 12  |-  ( 4  e.  RR  /\  0  <  4 )
24 pipos 13876 . . . . . . . . . . . . 13  |-  0  <  pi
252, 24pm3.2i 272 . . . . . . . . . . . 12  |-  ( pi  e.  RR  /\  0  <  pi )
26 ltdiv2 8833 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 4  e.  RR  /\  0  <  4 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  4  <->  ( pi  / 
4 )  <  (
pi  /  2 ) ) )
2721, 23, 25, 26mp3an 1337 . . . . . . . . . . 11  |-  ( 2  <  4  <->  ( pi  /  4 )  <  (
pi  /  2 ) )
2818, 27mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  4 )  < 
( pi  /  2
)
2915, 10ltnegi 8440 . . . . . . . . . 10  |-  ( ( pi  /  4 )  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
3028, 29mpbi 145 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  -u ( pi  / 
4 )
3130a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  <  -u ( pi  /  4
) )
32 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  4 )  < 
A )
3312, 17, 9, 31, 32lttrd 8073 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  -u ( pi 
/  2 )  < 
A )
342a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  e.  RR )
35 3re 8982 . . . . . . . . . 10  |-  3  e.  RR
3635, 10remulcli 7962 . . . . . . . . 9  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
3736a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( 3  x.  ( pi  / 
2 ) )  e.  RR )
386simp3bi 1014 . . . . . . . . 9  |-  ( A  e.  ( -u pi (,] pi )  ->  A  <_  pi )
3938ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <_  pi )
40 2lt3 9078 . . . . . . . . . . 11  |-  2  <  3
41 3pos 9002 . . . . . . . . . . . . 13  |-  0  <  3
4235, 41pm3.2i 272 . . . . . . . . . . . 12  |-  ( 3  e.  RR  /\  0  <  3 )
43 ltdiv2 8833 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  3  <->  ( pi  / 
3 )  <  (
pi  /  2 ) ) )
4421, 42, 25, 43mp3an 1337 . . . . . . . . . . 11  |-  ( 2  <  3  <->  ( pi  /  3 )  <  (
pi  /  2 ) )
4540, 44mpbi 145 . . . . . . . . . 10  |-  ( pi 
/  3 )  < 
( pi  /  2
)
46 ltdivmul 8822 . . . . . . . . . . 11  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  ( (
pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) ) )
472, 10, 42, 46mp3an 1337 . . . . . . . . . 10  |-  ( ( pi  /  3 )  <  ( pi  / 
2 )  <->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
4845, 47mpbi 145 . . . . . . . . 9  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
4948a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  pi  <  ( 3  x.  ( pi 
/  2 ) ) )
509, 34, 37, 39, 49lelttrd 8072 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
5111rexri 8005 . . . . . . . 8  |-  -u (
pi  /  2 )  e.  RR*
5236rexri 8005 . . . . . . . 8  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
53 elioo2 9908 . . . . . . . 8  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
5451, 52, 53mp2an 426 . . . . . . 7  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
559, 33, 50, 54syl3anbrc 1181 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  ( -u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) ) )
56 coseq0q4123 13922 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
5755, 56syl 14 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  ( ( cos `  A )  =  0  <->  A  =  (
pi  /  2 ) ) )
581, 57mpbid 147 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  =  ( pi  /  2
) )
59 prid1g 3695 . . . . 5  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) } )
60 eleq1a 2249 . . . . 5  |-  ( ( pi  /  2 )  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } ) )
6110, 59, 60mp2b 8 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
6258, 61syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  -u ( pi  / 
4 )  <  A
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
638recnd 7976 . . . . . . 7  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  CC )
6463adantr 276 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  CC )
65 cosneg 11719 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
6664, 65syl 14 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  ( cos `  A ) )
67 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  A )  =  0 )
6866, 67eqtrd 2210 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( cos `  -u A )  =  0 )
698renegcld 8327 . . . . . . . . . 10  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  e.  RR )
7069adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  RR )
71 0re 7948 . . . . . . . . . . 11  |-  0  e.  RR
7271a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  e.  RR )
73 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  <  0 )
748adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  RR )
7574lt0neg1d 8462 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
7673, 75mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <  -u A )
7772, 70, 76ltled 8066 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  0  <_  -u A )
782a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  pi  e.  RR )
792a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  pi  e.  RR )
806simp2bi 1013 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u pi (,] pi )  ->  -u pi  <  A )
8180adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u pi  <  A )
8279, 8, 81ltnegcon1d 8472 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  -u A  <  pi )
8382adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  < 
pi )
8470, 78, 83ltled 8066 . . . . . . . . 9  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  <_  pi )
8571, 2elicc2i 9926 . . . . . . . . 9  |-  ( -u A  e.  ( 0 [,] pi )  <->  ( -u A  e.  RR  /\  0  <_  -u A  /\  -u A  <_  pi ) )
8670, 77, 84, 85syl3anbrc 1181 . . . . . . . 8  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  e.  ( 0 [,] pi ) )
87 coseq00topi 13923 . . . . . . . 8  |-  ( -u A  e.  ( 0 [,] pi )  -> 
( ( cos `  -u A
)  =  0  <->  -u A  =  ( pi  / 
2 ) ) )
8886, 87syl 14 . . . . . . 7  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  ( ( cos `  -u A )  =  0  <->  -u A  =  ( pi  /  2 ) ) )
8968, 88mpbid 147 . . . . . 6  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u A  =  ( pi  /  2
) )
9064, 89negcon1ad 8253 . . . . 5  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  -u ( pi 
/  2 )  =  A )
9190eqcomd 2183 . . . 4  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  =  -u ( pi  /  2
) )
92 prid2g 3696 . . . . 5  |-  ( -u ( pi  /  2
)  e.  RR  ->  -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
93 eleq1a 2249 . . . . 5  |-  ( -u ( pi  /  2
)  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) }  ->  ( A  =  -u (
pi  /  2 )  ->  A  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
9411, 92, 93mp2b 8 . . . 4  |-  ( A  =  -u ( pi  / 
2 )  ->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } )
9591, 94syl 14 . . 3  |-  ( ( ( A  e.  (
-u pi (,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  0
)  ->  A  e.  { ( pi  /  2
) ,  -u (
pi  /  2 ) } )
96 pirp 13877 . . . . . . 7  |-  pi  e.  RR+
9713, 22elrpii 9643 . . . . . . 7  |-  4  e.  RR+
98 rpdivcl 9666 . . . . . . 7  |-  ( ( pi  e.  RR+  /\  4  e.  RR+ )  ->  (
pi  /  4 )  e.  RR+ )
9996, 97, 98mp2an 426 . . . . . 6  |-  ( pi 
/  4 )  e.  RR+
100 rpgt0 9652 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR+  ->  0  < 
( pi  /  4
) )
10199, 100ax-mp 5 . . . . 5  |-  0  <  ( pi  /  4
)
102 lt0neg2 8416 . . . . . 6  |-  ( ( pi  /  4 )  e.  RR  ->  (
0  <  ( pi  /  4 )  <->  -u ( pi 
/  4 )  <  0 ) )
10315, 102ax-mp 5 . . . . 5  |-  ( 0  <  ( pi  / 
4 )  <->  -u ( pi 
/  4 )  <  0 )
104101, 103mpbi 145 . . . 4  |-  -u (
pi  /  4 )  <  0
105 axltwlin 8015 . . . . 5  |-  ( (
-u ( pi  / 
4 )  e.  RR  /\  0  e.  RR  /\  A  e.  RR )  ->  ( -u ( pi 
/  4 )  <  0  ->  ( -u (
pi  /  4 )  <  A  \/  A  <  0 ) ) )
10616, 71, 8, 105mp3an12i 1341 . . . 4  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  0  ->  ( -u ( pi 
/  4 )  < 
A  \/  A  <  0 ) ) )
107104, 106mpi 15 . . 3  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  -> 
( -u ( pi  / 
4 )  <  A  \/  A  <  0
) )
10862, 95, 107mpjaodan 798 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )
109 elpri 3614 . . . 4  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) ) )
110 fveq2 5511 . . . . . 6  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
111 coshalfpi 13885 . . . . . 6  |-  ( cos `  ( pi  /  2
) )  =  0
112110, 111eqtrdi 2226 . . . . 5  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
113 fveq2 5511 . . . . . 6  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  -u (
pi  /  2 ) ) )
114 cosneghalfpi 13886 . . . . . 6  |-  ( cos `  -u ( pi  / 
2 ) )  =  0
115113, 114eqtrdi 2226 . . . . 5  |-  ( A  =  -u ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
116112, 115jaoi 716 . . . 4  |-  ( ( A  =  ( pi 
/  2 )  \/  A  =  -u (
pi  /  2 ) )  ->  ( cos `  A )  =  0 )
117109, 116syl 14 . . 3  |-  ( A  e.  { ( pi 
/  2 ) , 
-u ( pi  / 
2 ) }  ->  ( cos `  A )  =  0 )
118117adantl 277 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  A  e.  { (
pi  /  2 ) ,  -u ( pi  / 
2 ) } )  ->  ( cos `  A
)  =  0 )
119108, 118impbida 596 1  |-  ( A  e.  ( -u pi (,] pi )  ->  (
( cos `  A
)  =  0  <->  A  e.  { ( pi  / 
2 ) ,  -u ( pi  /  2
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   {cpr 3592   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802    x. cmul 7807   RR*cxr 7981    < clt 7982    <_ cle 7983   -ucneg 8119    / cdiv 8618   2c2 8959   3c3 8960   4c4 8961   RR+crp 9640   (,)cioo 9875   (,]cioc 9876   [,]cicc 9878   cosccos 11637   picpi 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643  df-pi 11645  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator