ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdisj Unicode version

Theorem fzdisj 10248
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )

Proof of Theorem fzdisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . . 4  |-  ( x  e.  ( ( J ... K )  i^i  ( M ... N
) )  <->  ( x  e.  ( J ... K
)  /\  x  e.  ( M ... N ) ) )
2 elfzel1 10220 . . . . . . . 8  |-  ( x  e.  ( M ... N )  ->  M  e.  ZZ )
32adantl 277 . . . . . . 7  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  e.  ZZ )
43zred 9569 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  e.  RR )
5 elfzelz 10221 . . . . . . . 8  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
65zred 9569 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  RR )
76adantl 277 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
8 elfzel2 10219 . . . . . . . 8  |-  ( x  e.  ( J ... K )  ->  K  e.  ZZ )
98adantr 276 . . . . . . 7  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  K  e.  ZZ )
109zred 9569 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  K  e.  RR )
11 elfzle1 10223 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  M  <_  x )
1211adantl 277 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  <_  x )
13 elfzle2 10224 . . . . . . 7  |-  ( x  e.  ( J ... K )  ->  x  <_  K )
1413adantr 276 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  x  <_  K )
154, 7, 10, 12, 14letrd 8270 . . . . 5  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  <_  K )
164, 10lenltd 8264 . . . . 5  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  -> 
( M  <_  K  <->  -.  K  <  M ) )
1715, 16mpbid 147 . . . 4  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  -.  K  <  M )
181, 17sylbi 121 . . 3  |-  ( x  e.  ( ( J ... K )  i^i  ( M ... N
) )  ->  -.  K  <  M )
1918con2i 630 . 2  |-  ( K  <  M  ->  -.  x  e.  ( ( J ... K )  i^i  ( M ... N
) ) )
2019eq0rdv 3536 1  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   RRcr 7998    < clt 8181    <_ cle 8182   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltwlin 8112
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fsumm1  11927  fsum1p  11929  mertenslemi1  12046  fprod1p  12110  fprodeq0  12128  strleund  13136  strleun  13137  gausslemma2dlem4  15743  gausslemma2dlem6  15746  lgsquadlem2  15757  cvgcmp2nlemabs  16400
  Copyright terms: Public domain W3C validator