| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzdisj | Unicode version | ||
| Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| fzdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3356 |
. . . 4
| |
| 2 | elfzel1 10148 |
. . . . . . . 8
| |
| 3 | 2 | adantl 277 |
. . . . . . 7
|
| 4 | 3 | zred 9497 |
. . . . . 6
|
| 5 | elfzelz 10149 |
. . . . . . . 8
| |
| 6 | 5 | zred 9497 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | elfzel2 10147 |
. . . . . . . 8
| |
| 9 | 8 | adantr 276 |
. . . . . . 7
|
| 10 | 9 | zred 9497 |
. . . . . 6
|
| 11 | elfzle1 10151 |
. . . . . . 7
| |
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | elfzle2 10152 |
. . . . . . 7
| |
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | 4, 7, 10, 12, 14 | letrd 8198 |
. . . . 5
|
| 16 | 4, 10 | lenltd 8192 |
. . . . 5
|
| 17 | 15, 16 | mpbid 147 |
. . . 4
|
| 18 | 1, 17 | sylbi 121 |
. . 3
|
| 19 | 18 | con2i 628 |
. 2
|
| 20 | 19 | eq0rdv 3505 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltwlin 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-neg 8248 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: fsumm1 11760 fsum1p 11762 mertenslemi1 11879 fprod1p 11943 fprodeq0 11961 strleund 12968 strleun 12969 gausslemma2dlem4 15574 gausslemma2dlem6 15577 lgsquadlem2 15588 cvgcmp2nlemabs 16008 |
| Copyright terms: Public domain | W3C validator |