Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzdisj | Unicode version |
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
fzdisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3310 | . . . 4 | |
2 | elfzel1 9980 | . . . . . . . 8 | |
3 | 2 | adantl 275 | . . . . . . 7 |
4 | 3 | zred 9334 | . . . . . 6 |
5 | elfzelz 9981 | . . . . . . . 8 | |
6 | 5 | zred 9334 | . . . . . . 7 |
7 | 6 | adantl 275 | . . . . . 6 |
8 | elfzel2 9979 | . . . . . . . 8 | |
9 | 8 | adantr 274 | . . . . . . 7 |
10 | 9 | zred 9334 | . . . . . 6 |
11 | elfzle1 9983 | . . . . . . 7 | |
12 | 11 | adantl 275 | . . . . . 6 |
13 | elfzle2 9984 | . . . . . . 7 | |
14 | 13 | adantr 274 | . . . . . 6 |
15 | 4, 7, 10, 12, 14 | letrd 8043 | . . . . 5 |
16 | 4, 10 | lenltd 8037 | . . . . 5 |
17 | 15, 16 | mpbid 146 | . . . 4 |
18 | 1, 17 | sylbi 120 | . . 3 |
19 | 18 | con2i 622 | . 2 |
20 | 19 | eq0rdv 3459 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 cin 3120 c0 3414 class class class wbr 3989 (class class class)co 5853 cr 7773 clt 7954 cle 7955 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltwlin 7887 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-neg 8093 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: fsumm1 11379 fsum1p 11381 mertenslemi1 11498 fprod1p 11562 fprodeq0 11580 strleund 12506 strleun 12507 cvgcmp2nlemabs 14064 |
Copyright terms: Public domain | W3C validator |