ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 Unicode version

Theorem fodju0 7111
Description: Lemma for fodjuomni 7113 and fodjumkv 7124. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodju0.1  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
Assertion
Ref Expression
fodju0  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    y, A    y, F    w, O    w, P
Allowed substitution hints:    ph( w)    A( w)    B( y, w)    P( y,
z)    F( w)

Proof of Theorem fodju0
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 djulcl 7016 . . . . 5  |-  ( u  e.  A  ->  (inl `  u )  e.  ( A B ) )
3 foelrn 5721 . . . . 5  |-  ( ( F : O -onto-> ( A B )  /\  (inl `  u )  e.  ( A B ) )  ->  E. v  e.  O  (inl `  u )  =  ( F `  v
) )
41, 2, 3syl2an 287 . . . 4  |-  ( (
ph  /\  u  e.  A )  ->  E. v  e.  O  (inl `  u
)  =  ( F `
 v ) )
5 fodjuf.p . . . . . 6  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
6 fveqeq2 5495 . . . . . . . 8  |-  ( y  =  v  ->  (
( F `  y
)  =  (inl `  z )  <->  ( F `  v )  =  (inl
`  z ) ) )
76rexbidv 2467 . . . . . . 7  |-  ( y  =  v  ->  ( E. z  e.  A  ( F `  y )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  v )  =  (inl `  z
) ) )
87ifbid 3541 . . . . . 6  |-  ( y  =  v  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
9 simprl 521 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
v  e.  O )
10 peano1 4571 . . . . . . . 8  |-  (/)  e.  om
1110a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/) 
e.  om )
12 1onn 6488 . . . . . . . 8  |-  1o  e.  om
1312a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  1o  e.  om )
141fodjuomnilemdc 7108 . . . . . . . 8  |-  ( (
ph  /\  v  e.  O )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
1514ad2ant2r 501 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
1611, 13, 15ifcldcd 3555 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  e. 
om )
175, 8, 9, 16fvmptd3 5579 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
18 fveqeq2 5495 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  1o  <->  ( P `  v )  =  1o ) )
19 fodju0.1 . . . . . . 7  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
2019ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  A. w  e.  O  ( P `  w )  =  1o )
2118, 20, 9rspcdva 2835 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  1o )
22 simplr 520 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  u  e.  A )
23 simprr 522 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
(inl `  u )  =  ( F `  v ) )
2423eqcomd 2171 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( F `  v
)  =  (inl `  u ) )
25 fveq2 5486 . . . . . . . 8  |-  ( z  =  u  ->  (inl `  z )  =  (inl
`  u ) )
2625rspceeqv 2848 . . . . . . 7  |-  ( ( u  e.  A  /\  ( F `  v )  =  (inl `  u
) )  ->  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
2722, 24, 26syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
2827iftrued 3527 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  =  (/) )
2917, 21, 283eqtr3rd 2207 . . . 4  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/)  =  1o )
304, 29rexlimddv 2588 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  (/)  =  1o )
31 1n0 6400 . . . . 5  |-  1o  =/=  (/)
3231nesymi 2382 . . . 4  |-  -.  (/)  =  1o
3332a1i 9 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  -.  (/)  =  1o )
3430, 33pm2.65da 651 . 2  |-  ( ph  ->  -.  u  e.  A
)
3534eq0rdv 3453 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 824    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   (/)c0 3409   ifcif 3520    |-> cmpt 4043   omcom 4567   -onto->wfo 5186   ` cfv 5188   1oc1o 6377   ⊔ cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  fodjuomnilemres  7112  fodjumkvlemres  7123
  Copyright terms: Public domain W3C validator