| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodju0 | Unicode version | ||
| Description: Lemma for fodjuomni 7253 and fodjumkv 7264. A condition which shows that
|
| Ref | Expression |
|---|---|
| fodjuf.fo |
|
| fodjuf.p |
|
| fodju0.1 |
|
| Ref | Expression |
|---|---|
| fodju0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjuf.fo |
. . . . 5
| |
| 2 | djulcl 7155 |
. . . . 5
| |
| 3 | foelrn 5823 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2an 289 |
. . . 4
|
| 5 | fodjuf.p |
. . . . . 6
| |
| 6 | fveqeq2 5587 |
. . . . . . . 8
| |
| 7 | 6 | rexbidv 2507 |
. . . . . . 7
|
| 8 | 7 | ifbid 3592 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | peano1 4643 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 1onn 6608 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 1 | fodjuomnilemdc 7248 |
. . . . . . . 8
|
| 15 | 14 | ad2ant2r 509 |
. . . . . . 7
|
| 16 | 11, 13, 15 | ifcldcd 3608 |
. . . . . 6
|
| 17 | 5, 8, 9, 16 | fvmptd3 5675 |
. . . . 5
|
| 18 | fveqeq2 5587 |
. . . . . 6
| |
| 19 | fodju0.1 |
. . . . . . 7
| |
| 20 | 19 | ad2antrr 488 |
. . . . . 6
|
| 21 | 18, 20, 9 | rspcdva 2882 |
. . . . 5
|
| 22 | simplr 528 |
. . . . . . 7
| |
| 23 | simprr 531 |
. . . . . . . 8
| |
| 24 | 23 | eqcomd 2211 |
. . . . . . 7
|
| 25 | fveq2 5578 |
. . . . . . . 8
| |
| 26 | 25 | rspceeqv 2895 |
. . . . . . 7
|
| 27 | 22, 24, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | 27 | iftrued 3578 |
. . . . 5
|
| 29 | 17, 21, 28 | 3eqtr3rd 2247 |
. . . 4
|
| 30 | 4, 29 | rexlimddv 2628 |
. . 3
|
| 31 | 1n0 6520 |
. . . . 5
| |
| 32 | 31 | nesymi 2422 |
. . . 4
|
| 33 | 32 | a1i 9 |
. . 3
|
| 34 | 30, 33 | pm2.65da 663 |
. 2
|
| 35 | 34 | eq0rdv 3505 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 df-1o 6504 df-dju 7142 df-inl 7151 df-inr 7152 |
| This theorem is referenced by: fodjuomnilemres 7252 fodjumkvlemres 7263 |
| Copyright terms: Public domain | W3C validator |