Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodju0 | Unicode version |
Description: Lemma for fodjuomni 7113 and fodjumkv 7124. A condition which shows that is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊔ |
fodjuf.p | inl |
fodju0.1 |
Ref | Expression |
---|---|
fodju0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuf.fo | . . . . 5 ⊔ | |
2 | djulcl 7016 | . . . . 5 inl ⊔ | |
3 | foelrn 5721 | . . . . 5 ⊔ inl ⊔ inl | |
4 | 1, 2, 3 | syl2an 287 | . . . 4 inl |
5 | fodjuf.p | . . . . . 6 inl | |
6 | fveqeq2 5495 | . . . . . . . 8 inl inl | |
7 | 6 | rexbidv 2467 | . . . . . . 7 inl inl |
8 | 7 | ifbid 3541 | . . . . . 6 inl inl |
9 | simprl 521 | . . . . . 6 inl | |
10 | peano1 4571 | . . . . . . . 8 | |
11 | 10 | a1i 9 | . . . . . . 7 inl |
12 | 1onn 6488 | . . . . . . . 8 | |
13 | 12 | a1i 9 | . . . . . . 7 inl |
14 | 1 | fodjuomnilemdc 7108 | . . . . . . . 8 DECID inl |
15 | 14 | ad2ant2r 501 | . . . . . . 7 inl DECID inl |
16 | 11, 13, 15 | ifcldcd 3555 | . . . . . 6 inl inl |
17 | 5, 8, 9, 16 | fvmptd3 5579 | . . . . 5 inl inl |
18 | fveqeq2 5495 | . . . . . 6 | |
19 | fodju0.1 | . . . . . . 7 | |
20 | 19 | ad2antrr 480 | . . . . . 6 inl |
21 | 18, 20, 9 | rspcdva 2835 | . . . . 5 inl |
22 | simplr 520 | . . . . . . 7 inl | |
23 | simprr 522 | . . . . . . . 8 inl inl | |
24 | 23 | eqcomd 2171 | . . . . . . 7 inl inl |
25 | fveq2 5486 | . . . . . . . 8 inl inl | |
26 | 25 | rspceeqv 2848 | . . . . . . 7 inl inl |
27 | 22, 24, 26 | syl2anc 409 | . . . . . 6 inl inl |
28 | 27 | iftrued 3527 | . . . . 5 inl inl |
29 | 17, 21, 28 | 3eqtr3rd 2207 | . . . 4 inl |
30 | 4, 29 | rexlimddv 2588 | . . 3 |
31 | 1n0 6400 | . . . . 5 | |
32 | 31 | nesymi 2382 | . . . 4 |
33 | 32 | a1i 9 | . . 3 |
34 | 30, 33 | pm2.65da 651 | . 2 |
35 | 34 | eq0rdv 3453 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 wrex 2445 c0 3409 cif 3520 cmpt 4043 com 4567 wfo 5186 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: fodjuomnilemres 7112 fodjumkvlemres 7123 |
Copyright terms: Public domain | W3C validator |