ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 Unicode version

Theorem fodju0 6931
Description: Lemma for fodjuomni 6933 and fodjumkv 6945. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodju0.1  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
Assertion
Ref Expression
fodju0  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    y, A    y, F    w, O    w, P
Allowed substitution hints:    ph( w)    A( w)    B( y, w)    P( y,
z)    F( w)

Proof of Theorem fodju0
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 djulcl 6851 . . . . 5  |-  ( u  e.  A  ->  (inl `  u )  e.  ( A B ) )
3 foelrn 5586 . . . . 5  |-  ( ( F : O -onto-> ( A B )  /\  (inl `  u )  e.  ( A B ) )  ->  E. v  e.  O  (inl `  u )  =  ( F `  v
) )
41, 2, 3syl2an 285 . . . 4  |-  ( (
ph  /\  u  e.  A )  ->  E. v  e.  O  (inl `  u
)  =  ( F `
 v ) )
5 fodjuf.p . . . . . 6  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
6 fveqeq2 5362 . . . . . . . 8  |-  ( y  =  v  ->  (
( F `  y
)  =  (inl `  z )  <->  ( F `  v )  =  (inl
`  z ) ) )
76rexbidv 2397 . . . . . . 7  |-  ( y  =  v  ->  ( E. z  e.  A  ( F `  y )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  v )  =  (inl `  z
) ) )
87ifbid 3440 . . . . . 6  |-  ( y  =  v  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
9 simprl 501 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
v  e.  O )
10 peano1 4446 . . . . . . . 8  |-  (/)  e.  om
1110a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/) 
e.  om )
12 1onn 6346 . . . . . . . 8  |-  1o  e.  om
1312a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  1o  e.  om )
141fodjuomnilemdc 6928 . . . . . . . 8  |-  ( (
ph  /\  v  e.  O )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
1514ad2ant2r 496 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
1611, 13, 15ifcldcd 3454 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  e. 
om )
175, 8, 9, 16fvmptd3 5446 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
18 fveqeq2 5362 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  1o  <->  ( P `  v )  =  1o ) )
19 fodju0.1 . . . . . . 7  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
2019ad2antrr 475 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  A. w  e.  O  ( P `  w )  =  1o )
2118, 20, 9rspcdva 2749 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  1o )
22 simplr 500 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  u  e.  A )
23 simprr 502 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
(inl `  u )  =  ( F `  v ) )
2423eqcomd 2105 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( F `  v
)  =  (inl `  u ) )
25 fveq2 5353 . . . . . . . 8  |-  ( z  =  u  ->  (inl `  z )  =  (inl
`  u ) )
2625rspceeqv 2761 . . . . . . 7  |-  ( ( u  e.  A  /\  ( F `  v )  =  (inl `  u
) )  ->  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
2722, 24, 26syl2anc 406 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
2827iftrued 3428 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  =  (/) )
2917, 21, 283eqtr3rd 2141 . . . 4  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/)  =  1o )
304, 29rexlimddv 2513 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  (/)  =  1o )
31 1n0 6259 . . . . 5  |-  1o  =/=  (/)
3231nesymi 2313 . . . 4  |-  -.  (/)  =  1o
3332a1i 9 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  -.  (/)  =  1o )
3430, 33pm2.65da 628 . 2  |-  ( ph  ->  -.  u  e.  A
)
3534eq0rdv 3354 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 786    = wceq 1299    e. wcel 1448   A.wral 2375   E.wrex 2376   (/)c0 3310   ifcif 3421    |-> cmpt 3929   omcom 4442   -onto->wfo 5057   ` cfv 5059   1oc1o 6236   ⊔ cdju 6837  inlcinl 6845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-1o 6243  df-dju 6838  df-inl 6847  df-inr 6848
This theorem is referenced by:  fodjuomnilemres  6932  fodjumkvlemres  6944
  Copyright terms: Public domain W3C validator