ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 Unicode version

Theorem fodju0 7123
Description: Lemma for fodjuomni 7125 and fodjumkv 7136. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodju0.1  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
Assertion
Ref Expression
fodju0  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    y, A    y, F    w, O    w, P
Allowed substitution hints:    ph( w)    A( w)    B( y, w)    P( y,
z)    F( w)

Proof of Theorem fodju0
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 djulcl 7028 . . . . 5  |-  ( u  e.  A  ->  (inl `  u )  e.  ( A B ) )
3 foelrn 5732 . . . . 5  |-  ( ( F : O -onto-> ( A B )  /\  (inl `  u )  e.  ( A B ) )  ->  E. v  e.  O  (inl `  u )  =  ( F `  v
) )
41, 2, 3syl2an 287 . . . 4  |-  ( (
ph  /\  u  e.  A )  ->  E. v  e.  O  (inl `  u
)  =  ( F `
 v ) )
5 fodjuf.p . . . . . 6  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
6 fveqeq2 5505 . . . . . . . 8  |-  ( y  =  v  ->  (
( F `  y
)  =  (inl `  z )  <->  ( F `  v )  =  (inl
`  z ) ) )
76rexbidv 2471 . . . . . . 7  |-  ( y  =  v  ->  ( E. z  e.  A  ( F `  y )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  v )  =  (inl `  z
) ) )
87ifbid 3547 . . . . . 6  |-  ( y  =  v  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
9 simprl 526 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
v  e.  O )
10 peano1 4578 . . . . . . . 8  |-  (/)  e.  om
1110a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/) 
e.  om )
12 1onn 6499 . . . . . . . 8  |-  1o  e.  om
1312a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  1o  e.  om )
141fodjuomnilemdc 7120 . . . . . . . 8  |-  ( (
ph  /\  v  e.  O )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
1514ad2ant2r 506 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
1611, 13, 15ifcldcd 3561 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  e. 
om )
175, 8, 9, 16fvmptd3 5589 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
18 fveqeq2 5505 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  1o  <->  ( P `  v )  =  1o ) )
19 fodju0.1 . . . . . . 7  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
2019ad2antrr 485 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  A. w  e.  O  ( P `  w )  =  1o )
2118, 20, 9rspcdva 2839 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  1o )
22 simplr 525 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  u  e.  A )
23 simprr 527 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
(inl `  u )  =  ( F `  v ) )
2423eqcomd 2176 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( F `  v
)  =  (inl `  u ) )
25 fveq2 5496 . . . . . . . 8  |-  ( z  =  u  ->  (inl `  z )  =  (inl
`  u ) )
2625rspceeqv 2852 . . . . . . 7  |-  ( ( u  e.  A  /\  ( F `  v )  =  (inl `  u
) )  ->  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
2722, 24, 26syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
2827iftrued 3533 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  =  (/) )
2917, 21, 283eqtr3rd 2212 . . . 4  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/)  =  1o )
304, 29rexlimddv 2592 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  (/)  =  1o )
31 1n0 6411 . . . . 5  |-  1o  =/=  (/)
3231nesymi 2386 . . . 4  |-  -.  (/)  =  1o
3332a1i 9 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  -.  (/)  =  1o )
3430, 33pm2.65da 656 . 2  |-  ( ph  ->  -.  u  e.  A
)
3534eq0rdv 3459 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   (/)c0 3414   ifcif 3526    |-> cmpt 4050   omcom 4574   -onto->wfo 5196   ` cfv 5198   1oc1o 6388   ⊔ cdju 7014  inlcinl 7022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  fodjuomnilemres  7124  fodjumkvlemres  7135
  Copyright terms: Public domain W3C validator