Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodju0 | Unicode version |
Description: Lemma for fodjuomni 7137 and fodjumkv 7148. A condition which shows that is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊔ |
fodjuf.p | inl |
fodju0.1 |
Ref | Expression |
---|---|
fodju0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuf.fo | . . . . 5 ⊔ | |
2 | djulcl 7040 | . . . . 5 inl ⊔ | |
3 | foelrn 5744 | . . . . 5 ⊔ inl ⊔ inl | |
4 | 1, 2, 3 | syl2an 289 | . . . 4 inl |
5 | fodjuf.p | . . . . . 6 inl | |
6 | fveqeq2 5516 | . . . . . . . 8 inl inl | |
7 | 6 | rexbidv 2476 | . . . . . . 7 inl inl |
8 | 7 | ifbid 3553 | . . . . . 6 inl inl |
9 | simprl 529 | . . . . . 6 inl | |
10 | peano1 4587 | . . . . . . . 8 | |
11 | 10 | a1i 9 | . . . . . . 7 inl |
12 | 1onn 6511 | . . . . . . . 8 | |
13 | 12 | a1i 9 | . . . . . . 7 inl |
14 | 1 | fodjuomnilemdc 7132 | . . . . . . . 8 DECID inl |
15 | 14 | ad2ant2r 509 | . . . . . . 7 inl DECID inl |
16 | 11, 13, 15 | ifcldcd 3567 | . . . . . 6 inl inl |
17 | 5, 8, 9, 16 | fvmptd3 5601 | . . . . 5 inl inl |
18 | fveqeq2 5516 | . . . . . 6 | |
19 | fodju0.1 | . . . . . . 7 | |
20 | 19 | ad2antrr 488 | . . . . . 6 inl |
21 | 18, 20, 9 | rspcdva 2844 | . . . . 5 inl |
22 | simplr 528 | . . . . . . 7 inl | |
23 | simprr 531 | . . . . . . . 8 inl inl | |
24 | 23 | eqcomd 2181 | . . . . . . 7 inl inl |
25 | fveq2 5507 | . . . . . . . 8 inl inl | |
26 | 25 | rspceeqv 2857 | . . . . . . 7 inl inl |
27 | 22, 24, 26 | syl2anc 411 | . . . . . 6 inl inl |
28 | 27 | iftrued 3539 | . . . . 5 inl inl |
29 | 17, 21, 28 | 3eqtr3rd 2217 | . . . 4 inl |
30 | 4, 29 | rexlimddv 2597 | . . 3 |
31 | 1n0 6423 | . . . . 5 | |
32 | 31 | nesymi 2391 | . . . 4 |
33 | 32 | a1i 9 | . . 3 |
34 | 30, 33 | pm2.65da 661 | . 2 |
35 | 34 | eq0rdv 3465 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 DECID wdc 834 wceq 1353 wcel 2146 wral 2453 wrex 2454 c0 3420 cif 3532 cmpt 4059 com 4583 wfo 5206 cfv 5208 c1o 6400 ⊔ cdju 7026 inlcinl 7034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1st 6131 df-2nd 6132 df-1o 6407 df-dju 7027 df-inl 7036 df-inr 7037 |
This theorem is referenced by: fodjuomnilemres 7136 fodjumkvlemres 7147 |
Copyright terms: Public domain | W3C validator |