Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodju0 | Unicode version |
Description: Lemma for fodjuomni 7125 and fodjumkv 7136. A condition which shows that is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊔ |
fodjuf.p | inl |
fodju0.1 |
Ref | Expression |
---|---|
fodju0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuf.fo | . . . . 5 ⊔ | |
2 | djulcl 7028 | . . . . 5 inl ⊔ | |
3 | foelrn 5732 | . . . . 5 ⊔ inl ⊔ inl | |
4 | 1, 2, 3 | syl2an 287 | . . . 4 inl |
5 | fodjuf.p | . . . . . 6 inl | |
6 | fveqeq2 5505 | . . . . . . . 8 inl inl | |
7 | 6 | rexbidv 2471 | . . . . . . 7 inl inl |
8 | 7 | ifbid 3547 | . . . . . 6 inl inl |
9 | simprl 526 | . . . . . 6 inl | |
10 | peano1 4578 | . . . . . . . 8 | |
11 | 10 | a1i 9 | . . . . . . 7 inl |
12 | 1onn 6499 | . . . . . . . 8 | |
13 | 12 | a1i 9 | . . . . . . 7 inl |
14 | 1 | fodjuomnilemdc 7120 | . . . . . . . 8 DECID inl |
15 | 14 | ad2ant2r 506 | . . . . . . 7 inl DECID inl |
16 | 11, 13, 15 | ifcldcd 3561 | . . . . . 6 inl inl |
17 | 5, 8, 9, 16 | fvmptd3 5589 | . . . . 5 inl inl |
18 | fveqeq2 5505 | . . . . . 6 | |
19 | fodju0.1 | . . . . . . 7 | |
20 | 19 | ad2antrr 485 | . . . . . 6 inl |
21 | 18, 20, 9 | rspcdva 2839 | . . . . 5 inl |
22 | simplr 525 | . . . . . . 7 inl | |
23 | simprr 527 | . . . . . . . 8 inl inl | |
24 | 23 | eqcomd 2176 | . . . . . . 7 inl inl |
25 | fveq2 5496 | . . . . . . . 8 inl inl | |
26 | 25 | rspceeqv 2852 | . . . . . . 7 inl inl |
27 | 22, 24, 26 | syl2anc 409 | . . . . . 6 inl inl |
28 | 27 | iftrued 3533 | . . . . 5 inl inl |
29 | 17, 21, 28 | 3eqtr3rd 2212 | . . . 4 inl |
30 | 4, 29 | rexlimddv 2592 | . . 3 |
31 | 1n0 6411 | . . . . 5 | |
32 | 31 | nesymi 2386 | . . . 4 |
33 | 32 | a1i 9 | . . 3 |
34 | 30, 33 | pm2.65da 656 | . 2 |
35 | 34 | eq0rdv 3459 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 wrex 2449 c0 3414 cif 3526 cmpt 4050 com 4574 wfo 5196 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: fodjuomnilemres 7124 fodjumkvlemres 7135 |
Copyright terms: Public domain | W3C validator |