ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelriv Unicode version

Theorem eqrelriv 4731
Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
Hypothesis
Ref Expression
eqrelriv.1  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
Assertion
Ref Expression
eqrelriv  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrelriv
StepHypRef Expression
1 eqrelriv.1 . . 3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
21gen2 1460 . 2  |-  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  B )
3 eqrel 4727 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
42, 3mpbiri 168 1  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1361    = wceq 1363    e. wcel 2158   <.cop 3607   Rel wrel 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-opab 4077  df-xp 4644  df-rel 4645
This theorem is referenced by:  eqrelriiv  4732  dfrel2  5091  coi1  5156  cnviinm  5182
  Copyright terms: Public domain W3C validator