Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relssdv | Unicode version |
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
Ref | Expression |
---|---|
relssdv.1 | |
relssdv.2 |
Ref | Expression |
---|---|
relssdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdv.2 | . . 3 | |
2 | 1 | alrimivv 1852 | . 2 |
3 | relssdv.1 | . . 3 | |
4 | ssrel 4667 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | 2, 5 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1330 wcel 2125 wss 3098 cop 3559 wrel 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 df-rel 4586 |
This theorem is referenced by: relssres 4897 poirr2 4971 relssdmrn 5099 txdis1cn 12617 |
Copyright terms: Public domain | W3C validator |