| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrelriv | GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| eqrelriv.1 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqrelriv | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelriv.1 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 2 | 1 | gen2 1496 | . 2 ⊢ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| 3 | eqrel 4807 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 〈cop 3669 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: eqrelriiv 4812 dfrel2 5178 coi1 5243 cnviinm 5269 |
| Copyright terms: Public domain | W3C validator |